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The cosmic microwave background anisotropy is sensitive to the slope and amplitude of primordial
energy density and gravitational wave fluctuations, the baryon density, the Hubble constant, the
cosmological constant, the ionization history, etc. In this Letter, we examine the degree to which
these factors can be separately resolved from combined small- and large-angular-scale anisotropy
observations. %e isolate directions of degeneracy in this cosmic parameter space, but note that
other cosmic observations can break the degeneracy.
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The observation of large-angular-scale ( 10') fluctu-
ations in the cosmic microwave background (CMB) [1,2]
marks the beginning of a new age of precision measure-
ment in cosmology [3—10). Dramatic improvements in
large- and small-angular-scale (& 1') experiments [3—10]
are anticipated. In this Letter, we explore the degree
to which the CMB anisotropy observations can deter-
mine cosmological parameters such as the slope of the
initial power spectrum, the age of the Universe, and the
cosmological constant. We find that CMB anisotropy
measurements alone cannot fix the parameters individu-
ally; however, a nontrivial combination of them can be
determined. More concretely, for models based on the
generation of Gaussian, adiabatic fluctuations by infls
tion, we have identified a new variable n„afunction of
the basic parameters that can be fixed to great preci-
sion by CMB anisotropy observations. Distinct models
with nearly the same value of n, cannot be discriminated
by CMB data alone. In a likelihood analysis, this leads
to error contours centered around a highly elongated
maximum-likelihood surface inside which n, is approx-
imately constant. However, combined with other cosmo-
logical observations, determining n, is a powerful tool for
testing models and measuring fundamental parameters.

We parametrize the space by

(Cz & &s,t,is, ~ h~ AB~ AA~ AcDM& AHDM& ~ ~ ) &

(s,T', 1~,...)

where Hp = 100hkmsec i Mpc i is the Hubble param-
eter, and O~ A CDM, HDM, are the energy densities as-
sociated with baryons, cosmological constant (A), cold
and hot dark matter, etc. , divided by the critical den-
sity. We use the CMB quadrupole moments C2

' ' ""'
to parametrize the overall amplitudes of energy den-
sity (scalar metric), gravitational wave (tensor metric),
isocurvature scalar, and other primordial Huctuations
predicted by the model. We parametrize the shape of
the initial (e.g., postinflation) Huctuation spectra in wave
number k by power law indices n, q;, , defined at time t;

by k ( [(bp/p)(k, t, )~ ) oc k"'+ and k ([h+ „(k,t;)[ ) ~
k"r, where bp/p and h+ „arethe amplitudes of the en-
ergy density and gravitational wave metric Huctuations
(for two polarizations), respectively.

In this Letter, we restrict ourselves to subdomains of
this large space consistent with inflation models of fluc-
tuation generation. Inflation produces a flat universe,
A«t'ai —1. We also take AHDM = 0, but note that,
for angular scales & 10', the anisotropy for mixed dark
matter models with ACDM + AHDM 1 is quite simi-
lar to the anisotropy if all of the dark matter is cold.
Given AB, we impose the nucleosynthesis estimate [11,12]
ABhz = 0.0125, to determine h; we also satisfy globu-
lar cluster and other age bounds [13], and gravitational
lens limits [14]: we range from h & 0.65 for Ap = 0 to
h + 0.88 for AA & 0.6 [13,14].

Inflation produces adiabatic scalar [15] and tensor [16]
Gaussian Huctuations. The quadrupole measured by the
Cosmic Background Explorer (COBE) fixes Cz +C2
but the tensor-to-scalar quadrupole ratio r—:Cz /Cz

(T) (s)

is undetermined (e.g. , see Fig. 1 in [17]). The indices
n, and n& are determined by power-law best fits to the
theoretical prediction over the scales probed by the CMB.
For generic models of inflation, including new, chaotic,
and extended models, inflation gives [17—19]

nt n, —1 and r —= C& /Cz -7(1 —n, ) . (1)
(T') (s)

Measuring r and n, to determine whether they respect
Eq. (1) is a critical test for inflation [20]. With this set
of assumptions, we have reduced the parameter space to
three dimensions, (r~n„h,AA) (where AB = 0.0125h 2

and AcDM = 1 —AB —AA). We explicitly display both
r and n, but with a [ as a reminder that r is determined
by Eq. (1) given n, ; we have also assumed nt ——n, —l.

Our results are based on numerical integration of
the general relativistic Boltzmann, Einstein, and hy-
drodynamic equations for both scalar [21] and tensor
metric fIuctuations using methods reported elsewhere
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[19]. Included in the dynamical evolution are all the
relevant components: baryons, photons, dark matter,
and massless neutrinos. The temperature anisotropy,
AT/T (8, P) = P& ar~ Yr~(8, P), is computed in terms

of scalar and tensor multipole components, a& and a&
(~) (T)

respectively. For in8ation, each multipole for the two
modes is predicted to be statistically independent and
Gaussian distributed, fully specified by angular power

spectra, Cr ——([ar [ ) and Cr ——([ar [ )
Our results are presented in a series of two-panel fig-

ures (e.g. , see Fig. 1). The upper plots show the spec-
trum Cr's normalized to COBE, and the lower bar charts
show the predicted (AT/T), , for idealized experiments
spanning 10' to 2'. The bar chart is constructed by
computing ((hT/T)2) =

4 Q(2E+ 1)C~Wr, where Wr
is a filter function that quantifies experimental sensitiv-

(AT'i AT 1 ' 2 AT 5

(T) Tp,„N~ T) + O'D2

(2)

An experimental noise cr~ below 10 s is standard now,
and a few times 10 is soon achievable; hence if sys-
tematic errors and unwanted signals can be eliminated,
the 1-sigma (v = 1) relative uncertainty in b,T/T will
be from cosmic variance alone, 1/y'2ND, falling below

ity [19,22]. Errors arise from experimental noise and the
theoretical cosmic variance. The error bars represent cos-
mic variance alone assuming full-sky coverage, exemplify-
ing the limiting resolution achievable with CMB experi-
ments. For more realistic error bars, consider a detection
obtained from measurements (bT/T), + cr~ (where o'~
represents detector noise) at i = 1, . . . , ND experimental
patches sufficiently isolated from each other to be largely
uncorrelated. For large ND, the likelihood function falls
by e " /2 from a maximum at (b,T/T), „when

4.0 r=0.0 [ n,=1.0
r=0.7 [ n,=0.9
r=1.4 [ n,=0.8 10

Multipole Moments - l

Q.Q

30

% ~W 'W W & & W & W &~~a~~» ~~a~ ~r

~ r=oo [ n,=~.0
r=0 7 [n;-0 9

' '.: r=1.4 [ n,=0.8

4.Q

o~ 3.0

2.0
U

1.0

0.0

r=Q i n,=1; 1=0.5; Q„=Q
Q„m0.4
h m 0.65

lI
I

I I

I I
I

2Q

10

'~ 0pp

~ r=& I ~.=1;h=s.s; n,=s
30 - & ~0.4[' h~o.ss

~ 20
X

DNR TEN SP91 SK PYTH INSAIN2 MAX WD2 OVRO

(10 ) (4') (1.5') {1.2') (1 ) (30') {25') (8') (2.6')

FIG. 1. Top: Power spectra as a function of multi-
pole moment f for (r=O[n, =1), (r=0.7~n, =0.9), and (r
=1.4[n, =0.8) where h = 0.5 and AA = 0 for all mod-
els. The spectra in all figures are normalized by the
COBE eT (10'):—(4m)

' P(2f, + 1)C& exp[ —E(E + 1)/158.4]
(a Gaussian filter with 10' FWHM), observed by DMR to be

1.2 x 10,with about a 30Fo error. Bottom: (b T/T),
levels with 1-sigma cosmic variance error bars for nine ex-
periments assuming full-sky coverage; see also Eq. (2). The
Gaussian coherence angle is indicated below each experiment;
see Refs. [1—ll[ for acronyms.
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FIG. 2. Power spectra as a function of 8 for scale-invariant,
models, with r = 0[n, = 1. The middle curve shows h = 0.5
and Og = 0. In the upper curve, Ap is increased to 0.4 while
keeping h = 0.5. In the lower curve, AA = 0 but h is increased
from 0.5 to 0.65 (hence Q~ drops from 0.5 to 0.3). The spectra
are insensitive to changes in h for fixed A~, Increasing AA or
A~ increases the power at E ~ 200.
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1070 for ND ) 50. The optimal variances shown in the
figures roughly correspond to filling the sky with patches
separated by 28FwaM.

Figure 1 shows how the small-angular signal is increas-
ingly suppressed as r increases and n, decreases [17,19].
For large maps, cosmic variance is significant for large-
angle experiments [23], but shrinks to insignificant levels
at smaller scales. It appears that r~n, could be resolved
if A, h, and ionization history were known.

Figure 2 shows the effects of varying A& or Hp com-
pared to our baseline (solid line) spectrum (r = 0]n, =
1, h = 0.5, AA = 0). Increasing Ap (or decreasing h)
enhances small-angular-scale anisotropy by reducing the
redshift z~ at which radiation-matter equality occurs.
Increasing AA also changes slightly the spectral slope for
E & I.O due to A suppression of the growth of scalar fluctu-
ations [24]. The bar chart shows that either r~n„Ag, or
h can be resolved if the other two parameters are known.

A degree of "cosmic confusion" arises, though, if r~n„
AA, and h vary simultaneously. Figure 3 shows spec-

tra for models lying in a two-dimensional surface of
(r~n„h,AA) which produce nearly identical spectra. In
one case, r]n, is fixed, and increasing AA is nearly com-
pensated by increasing h. In the second case, h is fixed,
but increasing AA is nearly compensated by decreasing
n, [25].

Further cosmic confusion arises if we also consider ion-
ization history [26]. Let zR be the redshift at which
we suppose sudden, total reionization of the intergalac-
tic medium. Figure 4 compares spectra with standard
recombination (SR), no recombination (NR), and late
reionization (LR) at zR = 50, where h = 0.5 and Ap = 0.
NR represents the behavior if reionization occurs early
(zR )) 200). The spectrum is substantially suppressed
for E & 200 compared to any SR models. Experiments
at & 0.5' scale can clearly identify NR or early reion-
ization (zR 150 gives qualitatively similar results to
NR). Reionization for 20 & zR & 150 results in modest
suppression at f 200, which can be confused with a
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FIG. 3. Examples of difFerent cosmologies with nearly iden-
tical spectra of multipole moments and (AT/T), , The solid
curve is (r = 0]n, = 1, h = 0.5, AA = 0) The oth.er two
curves explore degeneracies in the (r = 0]n, = 1, h, Ap) and
(r~n„h = 0.5, A~) planes. In the dashed curve, increasing
0& is almost exactly compensated by increasing h. In the
dot-dashed curve, the affect of changing to r = 0 42]n, = 0.9.4
is nearly compensated by increasing QA to 0.6.
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FIG. 4. Power spectra for models with standard recombi-
nation (SR), no recombination (NR), and "late" reionization
(LR) at z = 50. In all models, h = 0.5 and A~ = 0. NR
or reionization at z & 150 results in substantial suppression
at E & 100. Models with reionization at 20 & z & 150 give
moderate suppression that can mimic decreasing n, or in-
creasing h; e.g., compare the n, = 0.95 spectrum with SR
(t&n, dot-dashed) to the n, = 1 spectrum with reionization
at z = 50 (thick, dot-dashed).
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decrease in n, (see figure).
The results can be epitomized by some simple rules of

thumb: Over the 30' —2' range, (AT/T)2, is roughly
proportional to the maximum of E(f + 1)Ct (the First
Doppler peak). Since the maximum (corresponding to

0.5' scales) is normalized to COBE differential mi-
crowave radiometer (DMR) measurements (at 10').,
its value is exponentially sensitive to n, . Since scalar
fluctuations account for the maximum, the maximum de-
creases as r increases. The maximum is also sensitive to
the redshift at matter-radiation equality [or, equivalently,
(1 —AA)h ], and to the optical depth at last scattering
for late-reionization models, zR . These observations
are the basis of an empirical formula (accurate to +

15%%uo)

E(f + I)Ct
27l'O'7 (10 ) max

=A ea", (3)

@&here A = 0.1, B = 3.56, and

n, = n, —0.281n(1+0.8r)
—0.52[(1 —&A) hz] ~ —0.000 36 z& + 0.26,

where r and n, are related by Eq. (1) for generic inHation
models, and zR & 150 is needed to have a local maximum

(n, has been defined such that n, = n, for r = 0, h =
0.5, A~ = 0, and zR = 0) [12]. Hence, the predicted
anisotropy for any experiment in the range 10' and larger
is not separately dependent on n„r,BA, etc. ; rather, it
is a function of the combination n, .

Our central result is that CMB anisotropy experiments
can determine n„but variations of parameters along the
surface of constant n, produce indistinguishable CMB
anisotropy. Given present uncertainties in h, AA, and zR,
it vrill be possible to determine the true spectral index n,
(or r) to within 10%%uo accuracy using the CMB anisotropy
alone. Quantitative improvement can be gained by in-

voking constraints from large-scale structure, e.g. , galaxy
velocity and cluster distributions, although the results
are model dependent. Ultimately, tighter limits on QA,
h, ionization history, and the dark matter density are
needed before the CMB anisotropy can develop into a
high precision test of inflation.
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