VOLUME 72, NUMBER 8

PHYSICAL REVIEW LETTERS
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We study the effects of doping on spin-Peierls (SP) systems using the unimodular mean-field
theory. The impurity spins affect the singlet valence bond field and renormalize the magnetic
excitations. The SP transition temperature and the energy gap of magnetic excitations are reduced
by factors ~ n; and ~ n?/ 3, respectively, with n; as the impurity density. At a certain value of n;, a
gapless SP phase occurs, and the interaction between impurities becomes RKKY-like. The recently
observed reduction of SP transition temperature upon doping and occurrence of a spin glass phase
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is interpreted using the proposed theory.

PACS numbers: 75.10.Jm, 75.20.Hr, 75.40.Cx, 75.50.Ee

The theoretically predicted spin-Peierls (SP) state
with alternating bond length has been observed, so
far only in a few quasi-one-dimensional (1D) organic
compounds with antiferromagnetic (AF) interactions [1].
Very recently, it was found in an inorganic compound
CuGeOg [2]. Moreover, a drastic reduction of SP tran-
sition temperature T, was observed upon Zn doping and
a spin glass (SG) phase appeared in the doping range
0.02 < n; < 0.08 [3]. In this Letter we propose a theory of
SP transition in doped systems explaining these findings
and making further predictions on a gapless SP state to
be checked by experiments.

The SP transition is driven by the interaction be-
tween the (1D) spin-1/2 chains and the three-dimensional
(3D) lattice, which makes a mean-field (MF) approach
available due to its suppression of fluctuations. Below
the SP transition a uniform AF chain is deformed into
an alternating AF chain with a singlet ground state and a
magnetic gap [4]. Up to now there are two successful the-
ories of SP transition, i.e., that of Pytte [5] and of Cross
and Fisher [6]. In these theories, a fermion representation
via the Jordan-Wigner transformation (JWT) is used to
describe the spin-1/2 chain, and the fermion-phonon in-
teractions are taken into account in the random phase
approximation. However, it is difficult to investigate ef-
fects of impurity doping upon the SP systems within this
approach due to nonlocal features of JWT.

Anderson [7] has proposed the resonant-valence-bond
model to describe two-dimensional spin-1/2 AF systems.
Later, Arovas and Girvin [8] put forward a unimodu-
lar mean-field theory (UMFT) to decouple the quartic
term in an S = 1/2 uniform AF chain by a unimodu-
lar Hubbard-Stratonovich transformation. In this scheme
the quantum spins are represented by fermion operators,
while the uniform valence bond (VB) formed by two near-
est neighbor S = 1/2 spins as a singlet is fixed to unity,
so the constraint of one fermion per site is satisfied on
average. Therefore, the fluctuations of the VB field are
drastically suppressed, and the results obtained are sat-

isfactory.

In this Letter we employ the UMFT to study the SP
system, and consider the SP order parameter, the spin-
lattice distortion u quasiclassically as Su, Schrieffer, and
Heeger (SSH) [9] did in linear conducting chains. All
the known results of the SP transition obtained earlier
(5,6,10] can be readily derived in our approach. The ad-
vantage of this scheme is the easiness to deal with the
doping effects. In particular, it provides a clear picture
about the impurity effects on the SP system, analogous
to the doped S =1 linear-chain AF with a Haldane gap
[11,12]. To our knowledge, this is the first paper to deal
theoretically with doped SP systems.

Suppose a SP system is doped randomly by impurities
with different spins which disturb the VB structure of
the SP system, namely, the VB field is modified due to
the impurity spin-flip terms, and the wave function of
the magnetic excitation is renormalized by the impurity
scatterings. We find the SP T, is reduced by a factor ~ n;
with n; as the impurity density, whereas the decrease of
the energy gap is proportional to nf/ 3 and it collapses
at some value of n;, but the system is still in the SP
phase, i.e., the spin-lattice dimerization remains. Thus
we predict the existence of a gapless SP state to be
checked by direct experiments. This is rather similar
to superconductors doped with paramagnetic impurities
which reduce the energy gap and eventually give rise to
gapless superconductivity [13].

The Hamiltonian describing an impurity-doped SP sys-
tem is [12,14]

H = Hy+ H'™,
Ho =Y J(,l+1)S;-Si31 + ) _2Ku?,
l

l
H™ = "Aq-S,
(l
Ay = g(a,1)SIm — J(a,1)Sq, J(I,1+1) >0,
where Si™ is the impurity spin, g is the coupling between
impurity and host spins, @ denotes impurity site, (la)
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means summation over all impurity sites with [ = o+ 1,
u is the lattice distortion, and K is the elastic constant.

We consider a random distribution of impurities along
the spin chain. Suppose no correlations exist between Si™
and S, if Sim £ S,, then it is appropriate to assume that
§™ =0, S2™ = 15im(gim 4 1) (where § means any di-
rection), A2, = g(a,1)25"™(S™ 4 1) + J(e, 1)2S(S + 1),
if averages are taken over impurity’s random distribu-
tion. Of course, A2, = [g(e,l) — J(a,)]?S(S + 1), if
Si™ = S,. Since the ion mass is much bigger than the
electron mass, the kinetic energy of the lattice can be
neglected, so we can consider the lattice distortion qua-
siclassically. Moreover, the impurity spins are also con-
sidered as quasiclassical quantities in our treatment (im-
plications of the quantum nature for impurity spins will
be mentioned later). The host S = 1/2 quantum spins
are represented by fermion operators as [8], St = f;r fi

§” = fffT, S = %(fFfT - fffl) with a constraint
fifr+flf=1

sublattices A and B along the chain, and the exchange
integral is expanded in terms of the small lattice distor-
tion u as J(I,l + 1) = Jy + 2au, for [ € A sublattice,
and J(I,l + 1) = Jo — 2au, for | € B sublattice, where
a = —dJ(l,1 +1)/dl and Jy is the exchange integral for
a uniform chain.

As a result of the spin-flip scatterings, it is convenient
to use the eight-component generalization of the Nambu
formalism to treat the Hamiltonian (1). In Hase et al.’s
experiment [3] nonmagnetic impurities were employed.
For simplicity we will also discuss the nonmagnetic dop-
ing, although the formalism itself is very general. Of
course, if the spin chain is strictly 1D, doping by nonmag-
netic impurities will sever the spin chain. However, a real
system is only quasi-1D, so the interchain coupling as well
as the superexchange between the next nearest neighbors
will carry over the spin correlation effects. Since impu-
rities are randomly distributed, the doping of two sub-
lattices should be equivalent after averaging. In UMF'T,
the Hamiltonian (1) can be rewritten in the momentum

We assume that the spin lattice is divided into two | space as

H = 2N(JoS? +2Ku? + ) + % > (k) (|AKIQs + A24)T(K) + % > wl(k)[S(k - k) - QE(K'), (2)
k

where
vik) = (FiF A2 A s 15 15 fB ),

¥ (k) is its Hermitian conjugate, A is the Lagrangian mul-
tiplier for the constraint f; fr+ ff fi=1,and

Ap = —V2(Jae™k1+2) 4 Jpeik(1=2u))

Sk—k)=- Y

a€A or €B
with Jg = (Jo — 20u)/2 and Ja4 = (Jo + 2au)/2, while
Q=003 1 (1 = 1,2), Q3 =03QIRI, Qy =
IQo3®I, QU =030, 01, and R = (Ql,Qz,Qg),
with I and o;1,02,03 as 2 X 2 unit and Pauli matrices.
The lattice constant is set to unity, and the spin chain
has 2N sites. Note that we have performed the gauge
transformation of Read and Newns [15] to absorb the
phase factor of the VB, and make the VB be unity in
Eq. (2) to suppress its fluctuations (for details see Ref.
8).

First consider the undoped case to check our formal-
ism. The Hamiltonian can be exactly diagonalized, and
the MF free energy per site can be easily derived, from
which in the limit kT << v/2Jp, the SP T, is given
as, kgT, = 1.13v2Jy e~1/%0, with Ay = 4a?/7K+/2J,.
At zero temperature, for small u one finds o?u?/J¢ =
4/(e*+?/%0 + 8 — 24/)g). If a magnetic field k less than
a critical value is applied, the SP state is disturbed, but
the dimerization still remains [10]. For small h, it is easy
to obtain Tcp, = Tio[l — 0.32(uph/kpTe0)?], where Ty is
determined in zero magnetic field, up is Bohr magneton.
This magnetic field dependence is a special feature of the

gik=K) (@1 (Joo=i2(k=K) 4 T )§

k k'

rSP transition distinguishing it from ordinary structural

transitions.

Now we define an 8 x 8 Matsubara matrix
Green function of the SP system as G(k,k';7) =
—(T; Y (k,7)TI(K,0)) = 1Y, Glk,k';iwp)e™™nT,
where ¥(k,7) is the imaginary time Heisenberg repre-
sentation of W(k), T, denotes the imaginary time or-
der, (---) indicates the thermal average, and w, =
(2n+1)m/pB for the fermionic model. The impurity scat-
tering breaks the translational invariance which is re-
covered after averaging over the random impurity con-
figurations. Then the Matsubara Green function will
take the form éxr G(k,iwy) satisfying the Dyson equa-
tion, G~l(k,iw,) = Ggy'(k,iw,) — L(k,iw,), where
Y(k,iwn) is the self-energy term, while the bare Mat-
subara Green function Gy(k,iw,) is given from Eq. (2)
by Ggl(k,iw,) = iwnQo — |Ak|Qs — AQy, with Qp as
a 8 x 8 unit matrix. Using the standard technique for
resumming diagrams [13], we find

2
S (k, wn) = (%) LCERRY
x G(ky, iwn)[S(k — k1) - Q). (3)

Considering the properties of the matrices €2, €4, and
Qs, we make an ansatz

Gk, z) = Z(k,2)200 — Z(k, 2)| Bk (2)|s
—Z(kaz)’_\(ka z)Q41 (4)

where z is the frequency in the complex plane, Z(k, z)
is the wave function renormalization factor, |Ax(z)| and
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X(k, z) are the renormalized parameters for the VB field and the Lagrangian A multiplier, respectively.
Substituting Eqgs. (4) and (3) into the Dyson equation yields a set of integral equations,

_ % dk _ _ _ z _ -
Z(k,2)z=2z— —ﬂ_—lK(k, k1;2)Z(k1, 2)2, Z(k,2)A(k,z) = A+ d—:lK(k, k1;2)Z(kq, 2)A(k1, 2),
-% -5

% dk;

r T

Z(k, 2)|B(2)] = |Ak| + /

K(k, k1; 2)Z (k1 2)| Bk, (2)], (5)
7z
niS(S + 1)[J% + J% +2J4Jp cos 2(k — k)]

K(k,ky;2) =

"~ Z(ky,2)222 — Z(ky, 2)?| Ak, (2)|2 — Z(k1, 2)2 A (K1, 2)2’

with n; as the impurity density. Meanwhile, the constraint becomes

Z(k, iwn) (iwn) + Z(k, iwn) (K, iwn)

2y / ¥ dk
B&)g ™ Z(k,iwn )2 (iwn)? — Z(k, twn)2| Ak (iwn)|2 — Z(k, iwn)2A(k, iwn)?

Now Egs. (5) and (6) form a closed set of equations to
determine the parameters Z(k, z), |Ax(z)|, A(k, 2), and
), and the Green function G(k, z). In the doped case the
impurity spins affect the distribution of the spin density
along the chain, so the constraint can no longer be auto-
matically satisfied.

By the Feynman theorem, the free energy F of the
doped SP system is F' = Fo+f01 (O—Iﬂ?—h do, where (...},
means the thermal average for the Hamiltonian H, =
Hy + oH™, and Fy is calculated for o = 0. Suppose n; is
very small, so we keep the free energy f per site only up
to the first order of n;, and obtain T, in the doped case.
If a weak magnetic field h is also employed, the crossing
terms of h and n; will emerge in the free energy. However,
we may reasonably omit them for small n; and h. Thus
the magnetic field and the impurities will independently
change the properties of the SP system. It is readily
shown that the SP T, is

T.=Ty|l—0.14n; +—— —0.32 , (7
0[ (kBTco kBT M

where T, is given in zero magnetic field and without
doping. This equation is very important for verifying the
SP instability.

The fermion density of states is given by

N(z) = %/‘—f—? ('I‘r————Im (_;Sf’z)).

For small n;, we may also expand this equation up to the
first order of n;. After a somewhat lengthy calculation
(see [16]), we find a threshold frequency

qt P
— had 8
we = 2v2au (1 Toa2u? + 24a2u2> , (8)

: ?u?J3 2,2 2
with ¢ = 127n; Zzgg, p = n;(10.5a%u? — 0.375J¢). For
w < we, the density of states M(w) is zero. A physical
magnetic excitation has spin S = 1. In our approach it is
made up of two S = 1/2 fermions. In the weakly doped
case we may ignore the correlation effect between the

1278

gm0t = 1. (6)

two fermions induced by scattering at the same impurity.
Thus, the energy gap of the doped SP system is Eg =
2w.. This dependence upon n; is similar to that of the
Haldane energy gap upon doping [12].

In the experimental papers [2,3], Hase et al. adopt
the exchange integral J, = 88 K (kg = 1) according
to Bonner and Fisher’s work [17], and the SP transi-
tion is observed around 14 K. Thus at 7' = 0 K the SP
order parameter u and the energy gap Eg, in the ab-
sence of impurities are given by au/Jy = 0.076, Eg, =
4v/20u = 38 K. Using these parameters as input, we find
T. = Teo(1—11.1n;), which is in good agreement with the
experimental result of Hase et al.. It is thus inferred that
for n; close to 10%, the T, vanishes and the SP state
disappears. In the weakly doped case one can replace
4+/2au approximately by Eg, and obtain from Eq. (8),
Eg = Eg,(1—7.9n%® —10.4n;), from which we find that
the gap vanishes at n; ~ 2.8%.

Now we can give the following physical picture. The
impurity doping greatly affects the properties of the SP
system, especially it has a more drastic impact upon the
density of states than the SP T, itself. When the impurity
concentration n; increases, the energy gap Eg reduces
faster than the SP T,.. At some value of n; (about 0.03 for
the nonmagnetic doping), the energy gap first collapses,
but the spin-lattice dimerization still remains. The spin
lattice does not become uniform until another value of n;
(about 0.10). We call the state in between a gapless SP
phase. This interpretation is consistent with the experi-
mental observations of 3], because the SP transition was
determined there by a sudden drop of the magnetic sus-
ceptibility which shows the presence of a spin gap. We
would, therefore, prefer to interpret the critical concen-
tration n. = 0.03 as the collapse of the spin gap, rather
than the SP state itself. The weaker singularity in sus-
ceptibility than T~ is also consistent with the reduced
density of states in the pseudogap. Of course, a direct
check of our prediction would be the measurement of the
gap itself by neutron scattering and determination of the
VB alternation by x-ray diffraction or nutation NMR ex-
periments. The dimerization should depend both on the
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doping and the strength of the applied magnetic field.

The SG behavior observed in [3] was interpreted there
mainly due to the interchain coupling and other frustra-
tion effects. In our view, it is more related to the gapless
spin excitation spectrum in this doping range of the SP
state. In fact, from model (2) we see that the correlation
between impurities is mediated by fermions. In the usual
SP phase a magnetic excitation has a gap Eg, so the
interaction between two impurities induced by the mag-
netic excitations should be proportional to e~/¢, where
L is the distance between the two impurities, £ is the
correlation length and is proportional to Eal. It is obvi-
ous that such short range correlation does not favor the
SG state. To the contrary, in the gapless SP phase ¢
is infinite, and the magnetic excitations are gapless. The
correlations between impurities should be of a power law.
We may approximately evaluate the second order effec-
tive interaction between the impurities corresponding to
the Feynman vacuum polarization graph as [16]

14 J¢ cosm(|Ra — R,|)
H, fF X g 2 Sa -S y
%L TR Ry :

where R, is the ath impurity position, and Y’ means
a # 7. This correlation is RKKY-like.

It appears to us that the combination of long-range cor-
relations between impurities and spin-lattice distortion
leading to frustrations are mainly responsible for the SG
behavior. Of course, further studies are needed to clarify
this issue. It is worthwhile to mention that the gapless
spin excitation spectrum in some doped S = 1 Haldane
AF [12] should also lead to long-range correlations among
impurity spins, and possibly, a SG behavior as well.

Up to now, we have considered only the scattering ef-
fects of doped impurities. However, multiple scattering
of spin excitations on impurities may give rise to bound
states in the gap, as in superconductors with magnetic
impurities [18] and S = 1/2 state in Haldane gap AF
chain [19,12]. Moreover, the quantum fluctuations of im-
purities may also lead to some observable effects [20].
These issues will be discussed in future publications.

To summarize we have developed a theory to consider
the doping effect on the SP state. The results obtained on
the reduction of SP transition temperature and spin gap
upon doping agree with experiments. The prediction of a
gapless SP state can be checked by further experiments.
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