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Confirmation of the Modified Bean Model from Simulations of
Superconducting Vertices
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Prom a very simple description of vortices and pinning centers, we obtain nonlinear density
profiles of vortices in type-II dirty superconductors that result from changing an external magnetic
Geld. The results confirm a modified Been model description of these systems, following the Kim
empirical form that relates the current inside the material to the local magnetic Geld. We also obtain
realistic magnetization hysteresis loops and examine the discrete evolution of the density profiles in
our systems. This evolution is not continuous, but takes place by the occurrence of avalanches of
vortices promoted by the addition or extraction of vortices from the edges of the system.

PACS numbers: 74.60.Ge, 05.60.+w

Over the past three decades, the Bean model [1] for
the magnetization of hard type-II superconductors in a
varying external magnetic field has been successfully ap-
plied to a variety of experimental phenomena. In most
applications, the Bean form for the fiux density profiles
within a sample can only be inferred from bulk quantities
such as the magnetization, and details about the internal
field are hard to come by. One means of providing spe-
cific information about the behavior of fiux lines within a
material is through computer simulation (see, e.g. , [2,3]).
In this work, we simulate the development of Bean-type
profiles in a one dimensional system with a random array
of pinning centers. We examine the dependence of these
profiles on various parameters and demonstrate that the
only physical elements necessary to achieve Bean-like be-
havior are repulsive forces between vortices and attrac-
tive forces between vortices and pinning centers. We also
investigate the evolution of these profiles and find that
the dynamics of vortices within these systems obey power
laws suggestive of self-organized criticality [4]. The lit-

erature on vortices and the Bean model is vast and we

do not attempt a review. The interested reader is di-

rected to Refs. [5,6] and the papers cited therein for a
more complete discussion.

Our samples are one dimensional, with periodic bound-

ary conditions (i.e., the sample is a ring). Pinning centers
of uniform depth are distributed randomly over most of
the sample, with a small region left pin-free from which
vortices are either added or extracted. This pin-free

region, as will be explained more fully below, can be
thought of as the region where the "external Geld" is

applied.
For the interaction between vortices and pinning cen-

ters we will consider the latter to be represented by
parabolic potentials. These potentials have a finite range,
which is given by the constant („. Explicitly, the total
pinning potential acting on vortex i is
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where 2:," and x" represent the position of the ith vor-

tex and the jth pinning site, respectively. O(x) is the
Heaviside step function and f, is the force needed to de-

tach one vortex from one pinning center in the one body
problem, or, in other words, the strength of the pinning
well.

The interaction between vortices is much better un-

derstood than that between vortices and material defects

(pinning sites). Several theoretical methods (see, for in-

stance, Ref. [5]) lead to a vortex-vortex potential which

varies as a modified Bessel function. The evaluation of
this potential for a system with many vortices is very

costly in terms of simulation time, and we therefore ap-

proximate it by the following simple parabolic form:

., = ) A„(l~," z,"I —(„)'-O((„-lz",-~,"I), (2)
j,jvkz

where A„ is the strength of the potential and („ is the
vortex-vortex interaction range. This range, like that for
the vortex-pinning interaction, is taken to be finite. We

neglect the hard core part in the potential, where the
material is normal. This corresponds to assuming that
the Ginzburg-Landau parameter K is large.

The simulation consists of two procedures which cor-

respond to slowly ramping up and ramping down the
external field. Vortices are either added or extracted and

the system is then allowed to relax to equilibrium. If
friction is neglected, the total force that acts on vortex
i in the presence of other vortices and pinning centers is

W, = —V,V„, —V;V„,. We exploit the fact that W, is

linear in x", in 1D to calculate successive conGgurations
of the Aux lattice. This is performed iteratively by up-

dating z," in such a way that W, vanishes, where we take
as input the 2:" calculated in the previous step. Through-
out this work, the dimensions of length and force will be
referenced to („and f, ; i.e. , („=1 and f, = 1. The free

parameters are thus A„, N&, and („.
The simulations are performed by randomly distribut-

ing N„pin inngcenters over 80%%uo of the system. A 20%
chunk is left unpinned. The pinned region corresponds to
the actual sample. Within the pinning region, the pins
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FIG. 1. Vortex density profiles for the (a) ramp-up phase

and (b) ramp-down phase for a simulation with a pin density
of 30 per unit length and A„= 5. The flat plateaus on either
side of the sample show the density in the unpinned region
and the jagged V-shaped profiles correspond to the density in
the pinned region.

are distributed quite densely (with an average density
from 10 to 30 per unit length) but the pinning range („
is made small enough that the probability of pins over-
lapping is quite low ((~ = 0.005 for all data presented
here). This is done to avoid complicated pinning land-
scapes where some local pinning regions are much deeper
than others due to pin overlap. In general, then, the pin-
ning force in our models is provided by narrow, weak,
and densely distributed pins of uniform depth.

In the "ramp-up" phase of the simulation, vortices are
successively added to the unpinned region and in the
"ramp-down" phase, they are extracted from this region.
First, let us consider the ramp-up phase. The first few
vortices added to the systein remain in the unpinned re-
gion (UR) until, after a time, enough vortices have been
added that they cannot all remain in the unpinned re-
gion without overlapping. At this point, vortices begin
to be forced into the pinned region (PR) of the sample.
This process is impeded by the pinning forces encoun-
tered when a vortex enters the PR. As more vortices
are added, other vortices are gradually pushed farther
into the PR, in both directions, until the two developing
"flux fronts" meet in the middle of the PR. This situs
tion corresponds to reaching the full penetration field H*
discussed in Bean's work [1]. We then continue to add
vortices (up to 1600) until the system is quite densely
packed. The results of one such simulation are shown
in Fig. 1(a). In this figure, the circular sample is cut
in the middle of the UR and unfolded for visualization
purposes. The plot is of vortex density (which is propor-
tional to field) versus distance across the sample. One
can clearly see the development of Bean-like flux pro-
files, where the flux density is highest on the edges of the
sample and lowest in the middle. The density in the UR

FIG. 2. Magnetization curves for two simulations. The
outer, darker curve is for a pin density of 30 and the inner
curve is for a pin density of 15. Both samples have A„= 5.
The z axis is the vortex density in the unpinned region (UR),
which corresponds to external field.

can be thought of as the "external" field and the design
of the simulation is such that the boundary condition of
the internal field at the edges of the sample being equal
to the external field is automatically met.

Starting from the configuration that results upon the
completion of the ramp-up phase, we then successively
remove vortices from the UR and allow the system to
relax as before. This procedure is continued until all vor-
tices are removed from the UR. The configuration at this
point corresponds to the remnant magnetization peak
which results when an external field is raised to some
value and then brought back down to zero. The results of
a ramp-down simulation are shown in Fig. 1(b). Again,
Bean-like behavior is evident, including the characteristic
"gull-wing" shaped profiles which result when the mem-
ory of the initial configuration before the ramp-down is
not yet erased.

Exploiting the analogy between density in the UR and
external field, the results can be used to calculate a mag-
netization hysteresis loop for the sample. In actuality,
we create a partial loop since our simulation does not
readily allow for a reversal of field direction. The density
in the UR is taken to be the external field and the inte-
grated difference between this field and the internal field
across the sample yields the magnetization. This result
is illustrated in Fig. 2 for two difFerent pin densities.

An interesting feature of the profiles shown in Fig. 1 is
that one can observe a clear trend in the slope of the lux
density as a function of field. This slope corresponds to
the critical current J, in real samples, and it can be seen
to decrease as the local field increases. This variation in
J, leads to curved profiles, rather than the linear profiles
in the classical Bean picture. Such a variation is often
described as "modified" Bean behavior and several forms
of modification have been previously proposed.

One of the earliest of these was put forward in Ref. [7]
shortly after Bean's original work. There, the authors
define a maximum pinning force n and find empirically
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FIG. 4. Distribution of normahzed average displacements
for a simulation with pin density 20 and A„= 5. The nor-
malized average displacement, d, is plotted on the horizontal
axis and D(d), proportional to the number of events with a
given d, is plotted on the vertical axis.
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FIG. 3. 1/J, for a sample with a pin density of 20 and
A„= 5. Solid line is a linear fit to the data. Insets show
the dependence of the maximum pinning force n on 1/A„,
corresponding to pinning strength and pin density. The values
of n are obtained from linear fits like that shown in the main
figure.

that this maximum force does not vary with field. The
critical current at a given field is then found by equating
the Lorentz force with a as in the following:

a = J (H+Bp),

where n~ and Bp are constants which depend on the
microstructure of the material and H is the local field.
This form implies that the inverse of J, should depend
linearly on field.

By performing linear fits to portions of profiles like

those shown in Fig. 1 over a range of fields, we are able
to extract the dependence of J, on field in our samples.
The inverse of J, for one simulation is shown in Fig. 3.
One can see that a linear dependence of this quantity on
field describes the data very well. One can also observe
from the plot an apparent oscillatory behavior superim-

posed on the linear trend in 1/J, . This is an artifact of
the finite range of the vortex force, which results in a
small discontinuity in the slope whenever the number of
vortices within the force range of a given vortex increases

by one. In a real sample, this change would happen grad-
ually.

To further explore the relationship of our data to the
Kim model of Ref. [7], we examined the dependence of
the maximum pinning force o.~ on pin density and the
vortex-vortex force. Varying the latter quantity is equiv-

alent to varying the pinning strength since it is the ratio
of the pinning strength (defined as 1) to A„which deter-
mines the behavior. The results are shown in the insets in

Fig. 3. As expected, a increases monotonically with the

number of pinning centers and with the pinning strength,
1/A„.

We also investigated the dynamics of the system after
a single vortex has been added or subtracted. This was
accomplished by evaluating the displacements of all the
vortices in the system after each step. From this informa-

tion, one can extract most dynamical quantities of inter-
est. In particular, one can get an idea of the magnitude of
the global motion of the system after a vortex addition
or subtraction by calculating the average displacement
of all of the vortices in the system at that step. Exam-
ination of this quantity is complicated by the fact that
the properties of the system evolve as the vortex density
changes. The individual displacements of vortices, and
hence the global average, are generally smaller when the
system is more highly filled since the motion of each vor-

tex is constricted by the close proximity of its neighbors.
The simplest solution of examining only a small portion
of the simulation over which the properties of the system
do not vary much places too severe a restriction on the
statistics for this quantity. Our approach, then, consisted
of normalizing the average displacement at each step ac-
cording to that which would be expected for an unpinned
periodic system with the same number of vortices. The
a~erage displacement for a vortex in an unpinned system

can be shown to depend on total vortex number N as

L/4N, where L is the length of the system.

By dividing the average displacement at each step by
this normalizing function, we were able to eliminate any

systematic trends in the data over the course of the sim-

ulation and thereby focus upon the statistical fluctations

from step to step. The distibution of these normalized

average displacements is shown in Fig. 4 for a simulation

with a pin density of 20 per unit length, and A„= 5.
The ramp-up and ramp-down data were combined in this

plot since, when examined alone, their distributions were

comparable. We see power-law behavior over approxi-

mately 2.5 decades, with a slope of 0.71.
In addition, we exaxnined the distribution of displace-

ments of individual vortices in the system. Though this
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quantity is more diKcult to normalize, we see power-law
behavior over approximately 2.5 decades here as well.

The theoretical treatment of the Bean model usually
involves discussion of the Lorentz force on vortices. This
force is proportional to the product of the local field and
the current at that point. As emphasized by Brandt [6],
the only way a macroscopic transport current can exist in
a type-II superconductor is if it is accompanied by a gra-
dient in the density of vortices or curvature of vortices.
This is often a point of confusion in work on the subject
of magnetic and transport properties of superconductors.
In our simulation, no Lorentz force, psr se, is applied
to the vortices in the sample. They are simply driven
into the sample by the repulsive forces between vortices.
This repulsion, in conjunction with the interaction with
attractive pinning centers, leads naturally to the devel-
opment of a gradient in the vortex density, and vortices
tend to move down this gradient. Now in a real sample,
this gradient would necessarily, by Maxwell's equations,
be accompanied by a current and one could describe the
force on each vortex as being a Lorentz force which results
f'rom the interaction of current and magnetic field. Our
work emphasizes the fundamental equivalence of these
two outlooks; i.e., one can equally well describe the force
on a vortex as being due to a Lorentz type process or as
resulting from a greater repulsive force from the side of
the vortex where there is a higher density of neighbors.

Another important result from our simulations is the
natural development of a systematic decrease in J, with
increasing field. We stress again that the physical input
into these simulations is very simple, consisting only of
linear attractive and repulsive forces. That this is suffi-
cient to derive a dependence of J, on field that is con-
sistent with experiment suggests that one need look no
further to explain this behavior than that the increase
in repulsive forces that accompanies an increase in field
makes the pinning force, which does not vary with field,
gradually less important.

From a dynamic point of view, there has been con-
siderable interest and speculation about systems of the
type under investigation here possibly exhibiting self-
organized criticality (SOC) when driven to the threshold
of instability. Many discussions of SOC in pinned flux
lattices have relied on measurements or investigations of
systems relaxing aioay from criticality [8,9], making them
less than ideally suited for examining the SOC hypothe-

sis. In our work, the system is truly driven to the thresh-
old of instability and then allowed to organize itself into
a critical state. In this manner, our simulations are anal-
ogous to slowly dropping sand on the top of a pile and
observing the subsequent avalanches. It is generally be-
lieved that the strongest indicator of a system having an
SOC character is for the distribution of dynamical events
associated with that system to obey a power law. The
average vortex displacements, shown in Fig. 4, are a mea-
sure of the overall "avalanche" activity in our systems at
a given step. That this distribution follows a power law
over more than 2 decades suggests that these systems
may indeed be SOC in nature.
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