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Dynamics and Noise Spectra of a Driven Single Flux Line in Superconductors
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We study the low temperature dynamics of a single flux line in a bulk type-II superconductor, driven
by the Lorentz force acting near the sample surfaces, both near and above the depinning threshold. We
find a novel instability of the flux line motion at large driving currents. The po~er spectrum of the volt-
age noise generated by the moving flux line in the presence of random pinning has a co and co

' form
for co & ral and co & co], respectively, where col 0 at the depinning threshold.

PACS numbers: 74.60.Ge, 05.40.+j

Equilibrium and dynamic properties of flux lines in

type-II superconductors have fascinated condensed mat-
ter physicists ever since their postulated existence by
Abrikosov [1]. The need to understand the new high
temperature (type-II) superconductors for both funda-
mental and applicational purposes provided new impetus
for studying the physical properties of Aux lines. Many
recent studies have concentrated on the statistical
mechanics of a large collection of interacting flux lines

[2], in particular related to the questions of the type of
novel phases they form in a high T, superconductor [3,4],
collective motions of Aux lattices [5,6], and the dynamics
of the nonequilibrium Bean critical state [7-10].

In this Letter, we focus instead on the dynamical prop-
erties of a driven single Aux line in a bulk type-II super-
conductor, be it a high T, type or a conventional type, at
low temperatures. Physically, this corresponds to when H
is only slightly larger than H, i such that the flux lines

density is so small that their motion can be regarded as

independent of one another. The dynamics of a single

flux line represents a well defined problem which we

study here in detail, so as to build a sound foundation for
understanding the complex physics of the interacting flux

lines. All recent theoretical works on driven interfaces in

random media have assumed a bulk driving force [11,12].
An important new feature in our model is the realization
that the Lorentz force acts on a flux line at the sample
surfaces [13], rather than uniformly from inside the bulk

of the sample, since the applied current is confined to
within a thickness k from the surfaces (X-O. l ltm is the
London penetration length). We shall see that this new

realization implies an interesting instability for a driven

single Aux line at high driving Lorentz force (high
current density j). On the other side, at small applied
current the flux line is "pinned" by random impurities,
such that its average velocity E =0. At a critical current
density j„which depends on the density and the strength
of the pinning centers in a given sample and on the sam-

ple width in the direction of the 0 field, the flux line

starts to move, i.e., F & 0. We shall show that the critical
properties of this "depinning" transition give rise to in-

teresting noise behavior for the induced voltage due to

dl [o+U(x,y(x, t))]
' 2 1tt2

dx 1+ y [cr+U(x,y(x, t))],

~here o = (H, /8x)4trg ln(tc), with H, the critical field

and «.=A./g the Ginzburg-Landau parameter, is the Aux

line tension and U(x,y) is the random part of the line

energy arising due to impurities, defects, etc. , with

(U(x,y ) ) =0. In later calculations we assume that
U(x,y) is short-range correlated in space, so that
(U(x,y)U(x', y')) 2Db(x —x')b(y —y'). The change of
the flux line energy due to an infinitesimal displacement
of the line is

dl F„(x,y(x, t))bn(x, y(x, t))

dx F„(x,y(x, t) h y(x),
where bn is the normal displacement and hy is the dis-

placement in the y direction, and they are related by

by=a, nial+(By/Bx)2. Since in general LLe=jdx[be/
by(x)]ay(x), we get

(3)

F =— bs (4)
by (x)

Combining Eqs. (1), (2), and (4) and after some algebra,

flux motion.
For simplicity, we model the dynamics of a single flux

line as a two dimensional problem, defined by its shape
function y(x, t), with the y direction being the direction
of the driving Lorentz force. We first derive the equation
of motion for the single flux line. The basic equation is

the overdamped Newton's law,

yt„(x,y(x, t)) -F„(x,y(x, t)),
where v„ is the normal velocity of the flux line at position
(x,y(x, t)), F„ is the normal force per unit length, and y
is the damping coeflicient (y= &0/2trg c p„ from the
Bardeen-Stephen model [14], with &0 the flux quantum, g
the coherence length, and p„ the normal state resistivity).
To obtain F„,consider the energy of the Aux line,
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we obtain the equation of motion for the Aux line

yc. (x,y(x, r)) - [cr+U(x,y(x, r))]K(x,y(x, r))
—n VU(x y(x r)) (5)

where K(x,y(x, r)) =Bsin8/Bx, with tan8=8y/Bx, is the
local curvature and n =(—sin8, cos8) the local unit nor-

mal vector of the flux line. Note that Eq. (5) is rotation-
ally invariant and can be easily generalized to the case of
a bulk driving force. Using By/Bt t„v 1+(By/Bx),
Eq. (5) can be rewritten in the x yco-ordinates as

By cr+U 8y+BU By BU
y

Bt I+(By/Bx)2 Bxz Bx Bx By
'

At the boundary x = ~ L/2, a driving (Lorentz) force F
in the y direction is applied at the two ends of the Aux

line. [This corresponds to a driving current I in the third
(z) direction. ] This driving force is balanced by the local
line tension, so

F=+ [cr+U(+ L/2, y(+ L/2, t))]si n8( x=+ L/2) .

This gives the boundary condition

By(x ~ L/2)/Bx = ~ F/d(cr+ U) 2 —F2.

As the current density is confined to a surface layer with

thickness A, ((L, the total Lorentz force can be estimated
as F=pal/cD, with D being the same width in the y
direction. We ignore thermal Auctuations, corresponding
to the low temperature regime where the Aux line dynam-
ics is dominated by the driving Lorentz force and the ran-
dom pinning force.

Let us analyze the above flux line equation in the ab-
sence of randomness (U(x,y) =0). Physically this is a
valid approximation when the driving force is very large
(j»j,) and the string moves with a large velocity. The
equation of motion becomes

Niti ln a. = 101nx
16m A,

which will induce a field of the order of a few hundred G.
This is within the experimental range for applying a driv-

ing current to a type-II superconductor. We emphasize
that this instability should also occur in dense (interact-
ing) Aux line systems if the driving current is larger than
that given by Eq. (11).

We now study the influence of random energy U(x, y)
on the motion of the Aux line by numerically simulating
Eq. (6). We coarse grain the system on the length scale
of the pinning length I, [2,15], below which the Aux line

is smooth. The x axis is then discretized into N meshes of
size hx-l, . We use hx as the unit for length and arbi-
trarily set hx =0.01. We have also set o =y= 1, so that
both U and the driving force F are now measured in the
unit of o. We choose U(x,y) to be superposition of
Gaussian potentials of the form u exp[ —[(x—xci) + (y—yo) ]/w ], with u uniformly distributed in [—uci, uti]
and (xo,yo) randomly distributed in the x-y plane. The
average number of potentials per area hx is n~ and we
set the width of the potential w 6 /2x. The data
presented in this paper are for the parameters N =10000,
n~ =0.44, and uti=3x10 . For this set of parameters,
we find a depinning threshold of F, =0.055. Because of

boundaries reach 0 [8(x=+'L/2) ~x/2]; i.e., the
flux line "wets" the boundaries. For F) cr, there are no

. steady state solutions and the fIux line will be stretched
longer and longer. We can estimate the value of the driv-

ing current for this instability. As the current density is

confined to a surface layer with thickness A, &(L, the total
Lorentz force can be estimated as F= pal/cW, where I is

the driving current and W the sample width in the y
direction. Setting F =a gives the critical driving current
(per width of sample) for the onset of the instability

I 1000 A A
8' cm

By cr 8 y 88
y 1+(By/Bx)' Bx'2=~

We look for the steady state solution

8a = yv const .
X

Equation (8) can be integrated to give

(7)

(8)
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From the boundary condition F= ~ crsin8(x = ~ L/2),
we obtain the relation between the driving force F and
the steady state velocity v..
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v = s&n
yL cx

(10)

Note that the steady state velocity has a maximum value
c'may = ircr/yL. An interesting aspect of the steady state
solutions Eqs. (8)-(10) is the onset of an instability. As
F l7, t.' L' „and the flux line contact angles with

FIG. I. Power spectrum for the velocity fluctuations at driv-
ing force F 0.06 which is just above the depinning threshold.
(a) The spectrum for the velocities of the two end points, corre-
sponding to measurable voltage fluctuations. The dotted line
has slope —0.5. (b) The spectrum for the average velocity of
the string. The dotted line has slope —1.1.
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FIG. 3. Flux line profile in the ease of u0=3x 10 and

F 0.99. Also plotted is the curve given by Eq. (9) with

F 0.99.

FIG. 2. Power spectrum for the velocity fluctuations at driv-

ing force F 0.2 which exceeds the depinning threshold F,
significantly. (a) The spectrum for the velocities of the two end

points. The dotted line has slope 0.55. (b) The spectrum for
the average velocity of the string.

the random potentials U, the velocity of the string has in-

teresting spatial and temporal fluctuations in the moving

steady state. As the velocities of the ends of the string

correspond to the induced voltage drops in the direction
of the applied current, fluctuations in these velocities lead

to measurable voltage noise. In Fig. 1(a), we plot the

power spectrum of the temporal fluctuations of the end

point velocity of a string in steady state, at a driving force
F slightly larger than the depinning threshold F,. We ob-

serve that the low frequency part of the spectrum has the

form S„(to)-to ' —'. In Fig. 1(b), we plot the power

spectrum for the fluctuations of the spatially averaged ve-

locity [(v)(t) =(I/N)pity;/ht], which shows also a scal-

ing regime at low frequencies, S(,,&(to)-co "—'. In

Figs. 2(a) and 2(b), we plot the same power spectra for

the string at a driving force significantly larger than the

depinning threshold. The low frequency regime seen in

Figs. 1(a) and l(b) is now squeezed by a newly emerging

low frequency regime with a positive power, S, (to),
-toass ' for the —end velocity, and a white noise spec-

trum for the averaged velocity. For a very large driving

force, the fluctuations due to the random U are
insignificant (we will see in the next paragraph that the

fluctuations are of order 1/v); the shape and the velocity

of the flux line are well approximated by Eqs. (9) and

(10). In Fig. 3, we plot the instant shape of the flux line

along with Eq. (9) for F 0.99 which is very close to the

onset of the instability. The two curves are indistinguish-

able in the plot. The measured velocity of the Aux line is

v=0.0284, which is very close to the value v =0.0286
given by Eq. (10).

In order to understand qualitatively the above noise

spectra, we turn to the fluctuations of the flux line around

the average configuration (y(x, t)) which contains the
trivial t dependence vt and a nontrivial x dependence due
to the driving from the surface. To simplify the discus-

sion, let us truncate Eq. (6) by keeping only terms linear
in y(x, t), and substitute y(x, t) (y(x, t))+by(x, t) and

U(x,y(x, t)) -(U(x,y(x, t)))+rt(x, y(x, t)). Thus we

get (with o+(U) =y I, for simplicity)

8by(x t) 8'by(x t)
( ) ( ( ))

8x
8rt(x, y(x, t))

( ) 8rt(x, y(x, t)) (12)

with c~(x) =8 (y(x, t))/8x (the average of the string

curvature at x) and cz(x) =8(y(x, t))/8x (the average of
the string slope at x). Important features of Eq. (12) are

(i) rt is random in (x,y(x, t)) but not in (x, t) as in the

case of thermal fluctuations; and (ii) due to a nontrivial x
dependence of (y(x, t)), the model in (12) is not transla-

tionally invariant, which complicates the analysis of the

problem. In a qualitative discussion, however, one can re-

place c| (x) by, say, c |(x 0), and cz(x) by cz(x 0) 0
[note that (y(x, t)) is even in x]. Thus, we will ignore the

last term in (12), and ignore the x dependence of cI(x)
by replacing it with a constant, say, cI(x =0) or the spa-

tially averaged curvature

t L]2
cI(x)dx = [8(y(x=L/2, t—))/8x —8(y(x = L/2, t))/8xl = 2F/L. —

L & —L]2 L

[Note that at the depinning threshold, F F,-L, the spatially averaged cI(x) has a nonzero value. ] With these

simplifications one gets

8by (x,t) 8'by (x, t ) 8rt(x, y(x, t ) )+cI rt x,y x, t (12')
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To proceed, we take g to be short-range correlated ran-
domness, i.e., (&I(x,y) ri(x', y') ) =2DB'(x —x') b(y —y').
Equation (12') has been discussed in some other contexts
[15,16]. It contains a "random field" disorder, the term
c&rl, and a "random bond" disorder, the term t]ri/t]y. At
large driving, we may approximate ri(x,y(x, t)) by
ri(x, vt), so that ri can be approximated by uncorrelated
noise ri(x, I), with (ri(x, I) ri(x', t')) = (2D/v )b(x —x')
&& B(t —I'). With this Eq. (12') becomes easily tractable.
So, for autocorrelations of velocity at some point x of the
string we get S,, (ro) eo ()By(ro)~ )-ro'I (o& 0), in

agreement with our data at low frequencies in Fig. 2(a)
[17]. For the spatially averaged velocity we get S&,,&(ro)

-const (co 0), in agreement with our data in Fig.
2(b). We remark that this Iow-ro behavior is, for c&&0,
dominated by the "random field" term in (12'), whereas
the "random bond" term yields only subdominant scaling
corrections. For e~ 0, low-co velocity noise is much
weaker, of the form S,, -co . Recall, however, that
c&&0, and "random fields" dominate all the way down to
the depinning transition and at the transition.

The above behavior holds in the range of the very low

frequencies, ro ( co&. As F F„ro& 0, and the broad
frequency range we observe for ro) co&, with S,, (o&)
-ro and S&,,&(co)-co ",must be a manifestation of
the critical behavior of a second order depinning transi-
tion. Thus the correlation function obeys the scaling law

I

(By (x, I)By (x', I '))-
( I —t '( ~f ",", (13)

for (t t'l ( /I—ro-&& ' ' ~, where & is the time aver-
aged velocity. For a (I+ I)-dimensional random field

system, Ref. [11]gives P= —,
' and z = f. Equation (13)

implies that the autocorrelation of the velocity fluctua-
tions Bv(x, t) =I]By(x,t)/IJt decays as )t —t'~ &' ~, so
that S,, (ro)-ro & ~ ' -co . This agrees with the low

frequency part in Fig. 1(a). Equation (13) also implies
that S&,,&(ro)-co ~ '+'I' -ro ', in agreement with
the low frequency part in Fig. 1(b). These scalings for
S„(ro) and S&,,&(ro) hold above the frequency scale-ro&'&' ~ &, wh-ich is strongly depressed to zero at
the depinning transition where c 0, as can be seen in

Figs. 1(a) and 1(b).
In conclusion, we have studied the low temperature dy-

namics of a single flux line in a bulk type-II superconduc-
tor. The flux line is driven by the Lorentz force near the
sample surface. There exists a critical driving current
density j,. For j &j, the flux line is pinned by impuri-
ties. For j & j, the power spectrum of the voltage fluc-
tuations generated by the moving flux line has a form of

, for co(co~, and m, for m& cot. The crossover
frequency is co~-F . The co part is related to the
critical pinning-depinning transition which appears to be
in the "random-field" universality class. The co part is
due to fluctuations on length scales longer than the corre-
lation length of the transition [18]. At a large driving
current, an instability sets in, in which the driving force

generates new flux lines. This instability would change
drastically the dissipation mechanism and the dissipation
rate. Experimentally, it might be easier and even advan-

tageous to study not a single line but a dilute concentra-
tion of flux lines. Sufficiently dilute flux lines will not in-

teract with one another, and will lead to much larger
measurable voltage signals, for both the average flux ve-

locity as well as its temporal fluctuations.
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