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We show that, in contrast to local spin density, the self-interaction corrected local spin density
provides a correct description of the p phase of Ce metal. It correctly accounts for the volume and
magnetic moment collapse at the p—+n transition, in good agreement with experiment.
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The isostructural (fcc-+fcc) p —+cz transition in Ce
metal is associated with (15—17)% volume collapse, as
well as a magnetic moment collapse [1]. This first order
transition has a phase boundary terminating at a criti-
cal point which makes Ce a special case among elemental
metals. At low temperatures and normal pressures n-Ce
is the stable phase. This transition has received a lot of
attention throughout the years and several models have
been proposed to explain it. The most well known are
the promotional model [2], the Mott transition model

[3], and the Kondo volume-collapse (KVC) model [4].
The promotional model involves a promotion of the Ce
4f electron to the 5d conduction-band state. However,

positron annihilation experiments probing the electron
density have not found any substantial difference in the
number of 4f electrons across the transition [5]. This was

confirmed by Glotzel [6] whose first local spin density

(LSD) calculation showed no substantial change in the 4f
occupation number. Similar conclusions could be drawn

from the subsequent calculations performed within the
local density approximation [7]. However, none of those
calculations could reproduce the characteristics of this
first order isostructural transition, and no stable p phase
was found. What those calculations showed, in agree-
ment with experimental evidence, is the formation of a
magnetic moment for the volumes in the neighborhood
of p-Ce, indirectly implying the localized nature of the f
electrons in this phase. In the Mott transition model the

4f electrons are treated as localized and nonbonding in

the p phase, whereas in the a phase they are considered
to be itinerant and bonding. This implies that the energy
needed to destroy the f local moment in the p phase is

surmounted at the phase transition by the energy gained
on an f band formation in the a phase. This model
is consistent with positron annihilation experiments sug-

gesting delocalization of the 4f electrons in n-Ce into a
band state [5]. The KVC model uses the localized orbitals
to describe both o.-Ce and p-Ce. The use of the Ander-

son impurity Hamiltonian is an important aspect of the
model [8], leading to quantitative understanding of both
the high-energy spectroscopic and low-energy thermody-
namic properties of Ce. The essence of the KVC model

is the coupling between the 4f states and the conduction-

band states that drives the system through the transition.
In this model the change in Kondo energy of 60 meV
provides the small energy quantity needed to describe the
p-V phase diagram. According to Allen and Liu [9], it
is the Kondo spin fluctuation energy and entropy in Ce
that are responsible for the a-p transition. Eriksson et al.

[10],by implementing the orbital-polarization formalism,
involving orbital and spin quenching, have reproduced
certain features of the p~cz transition. In this formal-
ism the itinerant states are used to describe both phases,
and one deals with fourteen partially occupied 4f orbitals
that sum up to 1.

In this Letter we apply an ab initio approach to the

p —+n transition in Ce, provided by the LSD and self-

interaction corrected (SIC) LSD formalisms. We concen-
trate on the first principles self-consistent total energy
calculations as a function of the lattice parameter.

Recently, we have explored the consequences of the
self-interaction correction on the 4f states in the dis-

torted hcp Pr metal, where we have treated these states
on equal footing with the conduction-band states [11].
We have found, in agreement with spectroscopies, that
the 4f band splitting in Pr into the occupied and unoc-

cupied band complexes can be accounted for in the first

principles band structure theory if the self-interaction of

f electrons is removed. The unoccupied f bands strongly
hybridize with the conduction bands creating extremely
flat d bands at the Fermi level E~, substantially increas-

ing the density of states at E~, and hence the agreement
with the observed cyclotron masses, and providing the
Fermi surface consisting of four sheets of predominantly
d character, in agreement with de Haas —van Alphen ex-

periment [12]. These results indicate that the SIC-LSD is

capable of providing a correct description of the 4f states
in rare earth metals. The SIC-LSD formalism can dis-

criminate between the localized and delocalized solutions,
and always the ones providing an absolute minimum of
the energy functional are chosen [13].

We have described the SIC-LSD formalism and its im-

plementation in previous publications [11,14]. Here we

just summarize the main points.
In the SIC-LSD formalism a general one-electron state

(r) satisfies the following wave equation:
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[H —bV (r)]p (r) = ) s y (r),
a'

where H is the usual LSD Hamiltonian and

rl 2
bV (r) = 2 f , dr' + V„, ( ) y (r) ~, 0) (2)

[bv —SV [V .) =0, (3)

to the eigenvalue problem in terms of the unified Hamil-
tonian. This set of equations has to be satisfied for every
pair n, o(' in every iteration of the self-consistency (SCF)
cycle of the eigenvalue problem. Therefore, in the SIC-
LMTO-ASA band structure scheme one has to employ a

is the self-interaction correction to the usual LSD poten-
tial, and this correction vanishes for extended states. The
second term in Eq. (2) is the local spin density approx-
imation to the exchange and correlation potential, and
the Lagrange multipliers s«ensure the orthogonality of
&p 's. There are several points to be made with respect to
solving Eq. (1). First of all, one can convert it into a stan-
dard eigenvalue problem by employing the unified Hamil-
tonian concept [15]. The advantage is that from one ma-
trix diagonalization one obtains all solutions and they are
automatically orthogonal. Furthermore, one can make
use of crystalline symmetry and solve this eigenvalue
problem by means of one of the k-space band structure
methods. Here we employ the linear-muffin-tin-orbitals
(LMTO) method, with the atomic sphere approximation
(ASA) [16]. Applying SIC leads to the SIC-LMTO-ASA
generalization of this method. The SIC potential be-
comes k and band dependent, and it is important to con-
struct a SIC potential compatible with a given crystalline
symmetry. To accomplish that we apply symmetry oper-
ations and we sum up the k- and band-dependent poten-
tial over all operations that turn a particular k point in
the irreducible wedge of the Brillouin zone (BZ) into an
equivalent one, and divide by the number of these oper-
ations. This symmetrization procedure prevents the SIC
potential to remove degeneracies of the relevant bands, as
compared to the usual LSD band structure calculation.
For the same reason one is restricted in the choice of the
states to be self-interaction corrected. In the case of the
fcc structure the sevenfold degenerate f multiplet is split
into I'z (singlet), I'zs (triply degenerate), and I'qs (triply
degenerate) states, corresponding to Az, &z~, and &i
representations, respectively. Since Ce has only one 4f
electron, then the choice of the state to be self-interaction
corrected is unique, and this is precisely for the symmetry
reasons. Moreover, in the angular momentum expansion
of the potential only the spherically symmetric terms are
retained.

Because of an explicit orbital dependence of the SIC
potential [see Eq. (1)] it is required that the SIC-LSD en-
ergy functional is stationary under unitary transforma-
tions among the occupied orbitals rp (r). This require-
ment adds the following set of equations,

two-level SCF to reach convergence for both the total en-

ergy and wave functions. Equation (3) is often referred to
as the localization criterion [17], since it takes care that
the orbitals y posses the optimal degree of localization
for the absolute minimum of the SIC-LSD energy func-
tional. It also implies the Hermiticity of the Lagrange
multipliers matrix, so that it can be diagonalized provid-

ing the SIC-LSD eigenvalues. The SIC-LSD eigenvalues
obtained by diagonalizing the unified Hamiltonian ma-
trix agree very well with those provided by diagonalizing

the Lagrange multipliers matrix. This gives one confi-
dence that employing the unified Hamiltonian concept,
and overcoming the evaluation of the Lagrange multipli-
ers matrix, is a sensible choice.

We have performed semirelativistic spin-polarized cal-
culations with and without self-interaction correction, us-

ing SIC-LMTO-ASA and LMTO-ASA, respectively, for a
number of lattice parameters. The calculations have been
performed in two energy panels, each one using its own
set of standard (unscreened) LMTO spdf-basis functions.
The lower panel has included the semicore 5p bands and
the upper panel the valence 6s, 5d, and 4f bands. The
respective basis sets have difFered in the choice of the
energy expansion parameters e„~. In all calculations we
have used 525 k points in the irreducible part of the BZ,
and we have generated all equivalent k points in the BZ
by applying symmetry operations. Such a large number
of k points has been essential to self-consistently con-
verge results for the lattice parameters in the vicinity of
the p~o, transition in Ce, especially with respect to the
value of the magnetic moment.

In Fig. 1(a) we present both the LSD and SIC-LSD to-
tal energy curves as a function of the volume. The SIC-
LSD curve's minimum occurs virtually at the volume of
p-Ce, and it crosses the LSD curve at the volume for
which the LSD magnetic moment goes to zero [see Fig.
l(b)]. Note that the SIC-LSD moment also persists after
the crossing of the curves. The theoretical volume of the
p phase is 0.2 % smaller than the experimental volume,
indicating that the SIC-LSD correctly describes a stable
p phase of Ce. The latter statement is strengthened by
good agreement of the calculated and experimental p-V
curves for the p phase, although the calculated pressure
curve lies still higher than the measured curve, with a
bulk modulus of 340 kbar at the theoretical lattice con-
stant. The minimum of the LSD curve lies 5 mRy higher
than that of the SIC-LSD curve, and it underestimates by
about (9—10)% the volume corresponding to the u phase
of Ce metal. One can see that LSD fails to provide a
correct description of the o, phase, also giving much too
low a theoretical volume. Moreover, the agreement with
experiment of the calculated pressure curve for a-Ce is
not as good as in the case of p-Ce. The bulk modulus
of the a phase, evaluated at the theoretical lattice con-
stant, is 443 kbar. A common tangent construction gives
a positive transition pressure of 17 kbar, as opposed to
—8 kbar, the value obtained by extrapolating from the
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FIG. 1. The SIC-LSD (thin solid curve) and LSD (thick
solid curve) total energy (a) and magnetic moment m (in Bohr
magneton LLs) (h), as a function of volume. The common
tangent line is also shown in (a).

phase diagram to T = 0 K [18]. The theoretical volume
collapse is 23%, as compared to the experimental val-
ues of about (15—17)% [1]. We believe that the reason for
such overestimation of the volume collapse primarily lies
in the failure of the LSD to better describe n-Ce. The
LSD fails to describe the a phase as well, as the SIC-LSD
describes the p phase. This is probably not surprising due
to the fact that the a phase is still a strongly correlated
system, and the LSD would substantially overestimate
the value of the f fhopping -integral. However, the LSD
has been successful in describing high-pressure phases of
Ce [19],suggesting the sensitivity of this hopping integral
to the volume.

It should be mentioned that it is the number of ba-

sis functions used in the lower (semicore) panel that in-

fluences the relative positions of the LSD and SIC-LSD
total energy curves minima. Including only the s and p
LMTO's makes the LSD curve 3.0 mRy lower in energy
than the SIC-LSD curve, thus leading to a negative tran-
sition pressure of —ll kbar. Adding ot functions shifts
the SIC-LSD minimum below the LSD minimum with the
relative difference of 1.5 rnRy between the corresponding
minima and the transition pressure of 3 kbar. Includ-

ing also the f functions makes the SIC-LSD minimum

5 mRy lower than that of the LSD curve with the transi-
tion pressure of 17 kbar. Moreover, the inclusion of the

f functions is crucial for obtaining the theoretical lattice
constant of the p phase nearly equal to the experimen-
tal value (as compared to the spd calculation, adding the
f-basis function changes the equilibrium volume of p-Ce
by 2.8%, and of a-Ce by 0.8%). The sensitivity of the
relative positions of the LSD and SIC-LSD total energy
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minima to the choice of basis functions is disturbing and
might be solved in the future by use of the downfold-

ing technique [20]. Nevertheless, this sensitivity does not
seem to affect our qualitative conclusions concerning the
physics of the p~a phase transition.

Disregarding uncertainties in the actual value of the
transition pressure, and the relative positions of the LSD
and SIC-LSD total energy curves minima, these ab initio
calculations correctly reproduce the crucial characteris-
tics of this first order p~a transition, and especially the
SIC-LSD describes the p phase extremely well. The over-
estimation of the volume collapse seems to be mostly due
to the LSD. This is the Grst time that the p—+a transi-
tion could be described in terms of the ab initio calcula-
tions within the density functional theory. Moreover, it
is significant that in this description the energy ditference
between the two phases is in mRy range.

Analyzing further the total energy curves in Fig. 1, one
should note that these are the localized solutions that
give lower total energies for the volumes in the vicin-
ity of the p phase. At the crossing point of the two
energy curves both the localized and delocalized solu-
tions give the same total energy, and from that point on
the nonmagnetic, delocalized solutions give lower ener-
gies. The crossing point of the two total energy curves
is extremely dependent on the choice of the exchange-
correlation potential, and it is crucial to use the Ceperley-
Alder exchange-correlation potential [13] to correctly ac-
count for the disappearance of the magnetic moment at
the transition.

In Figs. 2(a) and 2(b) we present, respectively, the LSD
and SIC-LSD total densities of states for the theoretical
lattice parameters of the oL and p phases. In n-Ce, as
described by the LSD, the unoccupied 4f band states
strongly hybridize with the 5d and other valence bands,
contributing substantially to the total density of states
at the Fermi energy EF. In p-Ce, on the other hand,
the 4f states are split into the occupied states, occurring
at about —7.5 eV below EF, and the unoccupied states
at about 1 eV above EF. As a result of this splitting
the hybridization of the unoccupied 4f states with the
valence bands is extremely small. Moreover, these den-

sities of states imply a huge change in the one-electron
contribution to the total energy between the a and p
phases. Indeed, the one-electron sum in the p phase is

by 1164 mRy lower than in the n phase. However, the
respective total energies diIFer by 5 mRy orily. This is
because in the p phase the gain of 1443 mRy in Coulomb
energy is balanced by the loss of 720 mRy in kinetic en-

ergy and 718 mRy in exchange-correlation energy. From
these numbers one can see that there is a competition be-
tween the large on-site f fCoulomb -interaction, on the
one hand, and the f hybridization, on the other hand.
In the p phase the on-site f fCoulomb in-teraction wins,
leading to a localization of the f electrons which mani-

fests itself through an appearance of the low lying f peak
in the density of states.
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Summarizing, our results show that the strong hy-
bridization efFects of the f electrons are the driving force
behind the p~cs transition in Ce. This leads to an energy
lowering of the nonmagnetic state below the magnetic
state at small volumes. Within this ab initio approach
the SIC-LSD also provides the mechanism for switching
ofF the 4f contribution to cohesion at the phase tran-
sition. The SIC-LSD treats on equal footing both the
band fhybridiza-tion and the f fhopping, -and that is
true for all the f states. These ab initio calculations do
not discriminate between either the KVC or the Mott
transition model. They correctly account for the hy-
bridization change at the transition, in agreement with
both models. SufBces it to say that the SIC-LSD pro-
vides a correct description of the p phase and leads to
a small energy difFerence between the two phases. The
large underestimation of the equilibrium volume of cr-Ce
could be interpreted as an indication of missing correla-
tions due to the Kondo screening. Equally well, however,
one could argue that LSD would normally overestimate
the f fhopping integ-ral and bonding of such strongly
correlated systems as a-Ce. Therefore, at this stage one
cannot draw Gnal conclusions with respect to the nature
and degree of localization of the 4f electrons in the non-
magnetic n phase.

Similar calculations, using s very difFerent implements
tion of the SIC-LSD formalism, have independently been
performed by Svelte who reached very much the same
conclusions as the ones presented here [21].
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FIG. 2. The LSD (a) and SIC-LSD (b) total density of
states. The dashed curves are the d contributions to the total
density of states, while the dotted curves correspond to the f
contribution.
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