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We present a method for performing electronic structure calculations without the explicit use
of a basis. We combine a finite difference approach with ab initio pseudopotentials. In contrast to
methods which use a plane wave basis, our calculations are performed completely in “real space.”
No artifacts such as supercell geometries need be introduced for localized systems. Although this
approach is easier to implement than one with a plane wave basis, no loss of accuracy occurs. The
electronic structure of several diatomic molecules, Siz, C2, Oz, and CO, are calculated to illustrate

the utility of this method.

PACS numbers: 71.20.Ad, 31.15.4+q, 36.40.+d, 61.46.+w

One of the most successful methods for calculating
the electronic structure of condensed matter systems is
based on combining pseudopotentials with a plane wave
basis [1]. Only valence electrons need be considered in
this method. Since the resulting pseudopotential is weak
compared to the all-electron potential, plane waves often
are a reasonable basis. However, for localized systems
such as clusters [2,3], disordered systems such as liquids
or glasses [4,5], or semiperiodic systems such as surfaces
[6,7], the direct application of a plane wave basis is non-
trivial. One procedure to enable the use of plane waves is
the supercell approach. The “forced” periodicity allows
standard “band structure” codes to be used for nonperi-
odic systems. However, the disadvantages of this plane-
wave-supercell approach are notable. The plane wave
basis is required to replicate not only the electronic states
of the system of interest, but also “vacuum” regions im-
posed by the supercell geometry. Replicating the vacuum
in the supercell for a localized system can be almost as
costly as replicating the “real” part of the wave func-
tion. In a recent calculation for a complex surface, the
7 x 7 reconstruction of the (111) silicon surface, 700 atoms
were effectively treated: approximately 400 real atoms in
the supercell and a vacuum contribution effectively cor-
responding to another 300 atoms [6,7]. The supercell
approach also presents problems for charged systems. If
one considers a charged defect within a supercell config-
uration, each cell is charged. The total electronic energy
diverges. A simple “fix” to this problem is to insert a
uniform compensating charge in each supercell, but de-
termining the effect of this uniform background in terms
of a total energy, or binding energy, is highly nontriv-
ial [8,9]. One additional complication that arises with
the use of plane waves concerns the use of fast Fourier
transforms (FFT) for handling the convolutions. While
FFT’s are a great advantage in expediting the calcula-
tion, these transforms present computational communi-
cation obstacles when one attempts to implement such

1240

codes on parallel computer architectures.

Here we present a new approach which eliminates these
problems. Our approach is much simpler to implement
than the plane wave basis without any loss of accuracy.
The approach is based on utilizing the finite difference
method [10]. The “basis” in this approach is a real space
grid. It might be suspected that a grid approach would
not be competitive with plane waves. A fine grid may
result in so many points as to result in an unworkable
scheme. As we shall demonstrate, it need not be the
case for most electronic structure problems involving lo-
calized systems such as clusters or molecular systems.
Plane wave expansions and finite difference descriptions
are intimately related. If the wave function is slowly vary-
ing, then it should be easy to expand the function in a
plane basis. Concurrently, for a slowly varying function,
the wave function can be expanded in a Taylor series,
and a finite difference method using relatively few dis-
cretization points will work well. One clear limitation
of the finite difference approach and the plane wave ba-
sis is that neither will be very effective in describing an
all-electron potential.

A key aspect of our work is the availability of higher
order expansions for the kinetic energy operator, i.e., ex-
pansions of the Laplacian. If we impose a simple, uniform
grid on our system where the points are described in a
finite domain by (z;,y;, 2x), we may write

%Y Y 2N+2
B2 Z Cp¥p(zi + nh,yj, 2x) + O(h ), (1)
n=—N

where h is the grid spacing. The approximation is ac-
curate to O(h2N+2) upon the assumption that 1 can be
approximated accurately by a power series in h. Algo-
rithms are available to compute the coefficients C,, for
arbitrary order in h [11]. If the kinetic energy operator
can be expanded as in Eq. (1), then we can set up a
one-electron Schrédinger equation over the grid. We will

0031-9007/94/72(8)/1240(4)$06.00

© 1994 The American Physical Society



VOLUME 72, NUMBER 8 PHYSICAL REVIEW LETTERS 21 FEBRUARY 1994

employ the local density approximation (LDA). We assume a uniform grid over the three dimensions, but this is not
a necessary assumption. Over these grid points we must solve

hz

“2m

ni=-—N ng=—N

N N N
D> Cud(@i+nibyize) + Y, Cog¥(@i ¥y +n2hyze) + Y Cog®h(Ti,y5, 26 + n3h)

n3=—N

+[ Vion(Zi, ¥, 2k) + Va(Ti, Y5, 2k) + Vae (@4, Y5, 26)19(xi, Y5, 28) = E (x4, ¥, 26). (2)

If there are M grid points, the size of the full matrix
resulting from the above eigenvalue problem is M x M.
Here Vi, is the nonlocal ionic pseudopotential, Vi is the
Hartree potential, and V.. is the local density expression
for the exchange and correlation potential. The two fixed
grid parameters used in setting up the matrix are the grid
spacing h and the order N.

There are several issues which must be addressed
to solve Eq. (2). The first concerns the procedure
by which the self-consistent field is constructed [12].
The exchange-correlation potential V;. is trivial once the |

‘/ion(x: Y, Z) 1/)(-77: Y, z) = ‘/lOC(xv Y, Z) ¢(fb‘, Y, Z) + Z Gim Ulm(l‘, Y, Z)A‘/l(x; Y, Z),

charge density has been constructed over the grid. The
Hartree potential can be determined by setting up a ma-
trix equation and solving with direct or iterative meth-
ods, or as we have done for the isolated systems by solving
for Vg by direct numerical integration.

Another issue concerns the nonlocality of the ionic
pseudopotential, i.e., the angular momentum dependence
of this potential. These pseudopotentials are constructed
as for any LDA electronic structure calculation [13]. We
employ the Kleinman-Bylander [14] form in real space
(15]:

3)

Im

where

_ fulm(x,yv Z) AVI(IE,%Z) 1/)(37,% z) dxdydz .
™ Jum(z,y, 2) AVi(z,y, 2) wim(z,y, 2) dzdydz

(4)
Vioc is the local ionic pseudopotential; AV, = Vioc — Vi
is the difference between other ! components of the
ionic and the local ionic potential. The functions uy,
are solutions to the atomic pseudopotential for the va-
lence states of interest. Usually, one component is
taken as the local component, e.g., Vi = V, where
V, is the s component. The range of AV, is usu-
ally much less than a bond length. The nonlocality in
Vion is reflected by the occurrence of ¥(z,y, 2) in Gip.
The integral involving (z,y, z) is performed over the
grid, ie., [ wm(z,y,2) AVi(z,y,2) ¥(z,y,2)dzdydz =
3k Wim (Tis Y55 26) AVI(Ei, Y, 26)0(i, Y5, 26) B3
The full matrix for these isolated systems is real, sym-
metric, and sparse. These attributes can be utilized in
expediting the diagonalization procedure. The sparsity
of the matrix is a function of the order N to which the
kinetic energy is expanded. We have employed an itera-
tive diagonalization procedure which can take advantage
of the sparsity to solve for the eigenvalues and vectors.
An alternate approach to using the sparsity in perform-
ing the matrix vector products is to leave the matrix in
operator format. Using this procedure, there is no need
to store the matrix in any sparse form since the coeffi-
cients Cyp,,4 = 1,2,3 and n = —N, ..., N in Eq. (2) are
constant and as a result, the matrix-by-vector kinetic op-
erations required by the diagonalization routine can be
performed in “stencil” form. The nonlocal operations are
accomplished by performing them as vector-by-vector op-
erations. This strategy not only saves storage, it leads

G,

to an efficient implementation on most high-performance
vector and parallel computers.

To illustrate the utility of the finite-difference-
pseudopotential (FDP) method, we will calculate the
electronic structure of several simple diatomic molecules.
We have chosen to examine Si;, Cz, Oz, and CO. We have
calculated the electronic structure of these molecules
with a finite difference approach and with a plane wave
basis.

Three items need to be addressed: the domain to con-
tain the atoms, the order IV, and the grid spacing h.
Given the pseudoatom wave functions, we chose a radius
Rax beyond which we expect the atomic states to van-
ish. Typically this radius encompasses at least 99% of
the valence charge. We chose Rpnax to be 6.8 a.u. for
Si and 5.6 a.u. for C and O (1 a.u. = 0.529 A). The
domain is constructed by requiring all atoms of interest
to reside at least Ryax from a surface. In the standard
finite difference method, the order N is fixed (at N = 1)
and the mesh size h is varied to obtain a desired accuracy.
Typically to determine the accuracy the results of the two
meshes are compared (h and h/2), and an estimate of the
error is then determined. A more appropriate mesh spac-
ing h can then be derived if necessary. However, since we
have knowledge of the eigenvalues and the pseudo wave
functions as determined by a direct integration of the
atomic pseudopotentials, we can use this information to
compare with the results obtained by the finite difference
method. With our approach we have two parameters, N
and h, to obtain the desired accuracy. We start with
a large grid spacing and continuously reduce h until the
eigenvalues and wave functions are replicated. We do this
for several orders of N in Eq. (1). We have experimented
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TABLE 1. Atomic energy levels (in Ry) from pseudopo-
tentials by direct integration (DI) and from finite difference
calculations (FD). Also, the lowest excitation (in eV) as calcu-
lated from finite difference pseudopotentials and as measured
from atomic spectra [16].

TABLE II. Properties of diatomic molecules. The experi-
mental data are from [19]. The theoretical results are from a
finite-difference-pseudopotential (FDP) calculation, and from
other methods using similar forms for the local density ap-
proximation.

Silicon Carbon Oxygen Sia Ca O, CcO
E, (FD) —0.78 —0.99 -1.74 Cohesive Energy (eV)
E, (DI) —0.80 —1.00 -1.74 Experiment 3.0 6.32 5.21 11.24
E, (FD) -0.29 -0.38 —-068  FDP 4.2 7.3 7.5 111
E, (DI) —0.31 —0.40 —0.68 Other theory 418 7.24° 7.53° 9.6°
3 1
BomE, amow s i (1
pt. : : : Experiment 2.24 1.24 1.21 1.13
FDP 2.25 1.21 1.21 1.13
L Other theory 2.25% 1.25° 1.21° 1.17°
with N = 4, 6, and 9. We find that for most applications Vibrational mode (cm~")
orders higher than N = 6 flo nc?t !)rovxde significant im- Experiment 511 1855 1580 2170
provement. For example, if N is increased from 6 to 9, FDP 520 1909 1630 2000
the total electronic energy of the oxygen atom changgs by Other theory 486° 1903° 1606° 2100°
less than ~0.01 Ry for h = 0.4 a.u. All the calculations
reported here are done with N = 6. The grid spacing  *From Ref. [17].
was taken to be h = 0.75 a.u. for silicon, and h = 0.4 for ~ "From Ref. [20].
°From Ref. [21].

carbon and oxygen. The matrix size obtained from this
procedure is comparable with that obtained using plane
waves, but no costly FFT’s or packing or unpacking of
vectors needs to be performed.

In Table I, we list the pseudopotential eigenvalues from
the direct integration of the atomic Schrédinger equation
and as calculated using the finite difference method as
outlined above. The largest error in the eigenvalues is on
the order of ~0.01 Ry. This is the type of error which
one would introduce using a plane wave basis. We expect

error cancellation to occur for the diatomic molecules
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FIG. 1. Radial pseudo-wave-function distributions for sil-
icon, carbon, and oxygen for the s state (dashed line) and
p state (solid line). The solid points correspond to a finite
difference description for the s state () and the p state (4).
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and the relative energy difference should be converged
to better than this tolerance. As a test of the atomic
wave functions from our finite difference method, we have
calculated the lowest excitations for the atomic species
of interest, a 3P — 1D transition. Using perturbation
theory to include spin polarization, we compare the cal-
culated transition to measured atomic spectra [17]. In
Fig. 1, we illustrate the wave function from finite differ-
ence calculations and compare the wave functions from
direct integration.

The diatomic molecules were computed following the
same prescription as for the atomic species. By deter-
mining the electronic energy change as a function of bond
length, we can find the cohesive energy, the equilibrium
bond length, and the vibrational modes. The cohesive
energy from local density calculations is not very reliable
without including gradient corrections [18]. Our moti-
vation here is not to improve on this formalism, but to
test the accuracy of the finite difference method. We
have determined the cohesive energy by subtracting the
energy of the constituent atoms from the molecular en-
ergy without gradient corrections. Typically, we find an
overbinding by ~1-2 eV compared to experiment. This
overbinding is reassuring in that incomplete or poorly
converged bases often yield cohesive energies which are
underbound compared to experiment. In our cohesive
calculations, we have included spin polarization via per-
turbation theory for both the atom and the molecule [17].
Bond lengths are accurately reproduced by our calcu-
lations as are the vibrational modes. The vibrational
modes were determined by fitting a cubic polynomial to
the energy versus bond length curve. The vibrational
modes are accurate to within a few percent on the ba-
sis of this fitting. Our results are summarized in Table
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methods prior to publication. We also acknowledge the
technical assistance of Kesheng Wu.
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FIG. 2. Pseudocharge densities for Siz, Ca, O2, and
CO molecules. The left hand side corresponds to fi-
nite-difference-pseudopotential calculations; the right hand
side corresponds to pseudopotential plane wave calculations.
The densities are in atomic units. The contour spacings are
0.0125 for Siz2, 0.05 for C2, and 0.15 for O and CO.

II. In Fig. 2, we compare the charge density of the di-
atomic molecules as calculated from the finite difference
method to plane wave calculations using the same pseu-
dopotential in a supercell geometry. (The total energies,
bond lengths, and vibrational frequencies agree to within
computational accuracy.) The charge densities are nearly
identical; the chief difference is a finer grid used for the
plane wave basis.

It is very gratifying to note that the finite difference
wave functions reproduce the dipole moment of the CO
molecule. The dipole in CO is extraordinarily sensitive
to the bond length and even changes sign with changing
bond length [21]. At large distances the dipole corre-
sponds to C*O~. At smaller distance the sign reverses,
and at equilibrium, the dipole corresponds to C~Ot.
The dipole we calculate is —0.1D, as compared to the
experimental value of —0.122D [22].

In summary, we have presented a method for perform-
ing electronic structure calculations without the explicit
use of a basis. We have combined the finite difference
approach with ab initio pseudopotentials. In contrast to
methods which use a plane wave basis, our calculations
are performed completely in “real space.” No artifacts
such as supercell geometries need be introduced for lo-
calized systems. The method is applicable to charged
systems. Moreover, it is much easier to implement than
are plane waves, and it is amenable to parallel machine
architectures.

We would like to acknowledge support for this work by
the National Science Foundation and by the Minnesota
Supercomputer Institute. We thank Dr. Bengt Fornberg
for a copy of his paper on higher order finite difference
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