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We study the resonant tunneling of quasiparticles (anyons) through an impurity between the edges
of a fractional quantum Hall sample. These quasiparticles are anyons, but their equilibrium one-
particle correlation functions are shown to have some quasi Fermi properties. The broken symmetry
of many-particle states at the impurity yields a new selection rule for the resonant tunneling: The
resonance is suppressed unless an integer number of electrons occupies the impurity. This rule allows
an explanation of the scaling behavior observed in the mesoscopic fluctuations of the conductivity
in the &actional quantum Hall effect.

PACS numbers: 73.20.Dx, 73.40.Gk, 73.40.Hm

The question to what extent the fractionally charged
quasiparticles proposed by Laughlin [1] are real, and
whether they can be observed individually, was recently
treated experimentally [2,3]. In these experiments the
fractional quantum Hall effect (FQHE) samples with a
constriction were studied, in order to observe the essen-
tially one-particle tunneling processes of the quasiparti-
cles. In particular, the frequencies of mesoscopic fiuctu-
ations of the longitudinal resistance in the FQHE with
v = 1/3 were comparec} to those in the integer QHE
(IQHE).

Previously, Jain and Kivelson [4] suggested that the
resonant tunneling of electrons from one edge to another
through an impurity could cause an enhancement of the
dissipative resistance in the IQHE samples with a narrow
constriction. Kivelson and Pokrovsky [5] proposed an
analogous mechanism for the fractionally charged quasi-
particles in the FQHE. Their model implied simple scal-
ing laws for periods of the mesoscopic oscillations in the
vicinity of the state with filling factor v—:p/q: AB oc q
at fixed gate voltage VG, and 6V~ oc p at fixed magnetic
field 8 Both predi. ctions have been confirmed experi-
mentally [2,3].

Nevertheless, the theoretical understanding of this
scaling cannot be considered satisfactory. In particular,
Kivelson [6] derived quasiclassical quantization rules for a
multianyon bound state at the impurity allowing for their
statistical interaction; his scaling relations are difFerent
from the observed ones and from those of [5]. Lee [7] sug-
gested that the difference could be explained if Coulomb
interaction of the quasiparticles is dominant. Later ex-
periments [3] have shown that it is not true.

Another problem in understanding these experiments
is that the mechanism of resonant tunneling usually im-
plicates the existence of the Fermi level for excitations.
It clearly exists for the case of the IQHE but is much

less obvious for the FQHE. Recently Haldane [8] defined
the generalized Pauli principle for anyons. This princi-
ple, however, does not imply the existence of the distinct
Fermi level required to explain the resonances in tunnel-
ing.

The purpose of this work is to elucidate these general
questions and give a new explanation for the experimen-
tal result. We start from the one-particle semiclassical
description of the resonant tunneling and then show that
the same physical picture may be obtained from the anal-
ysis of the effective many-particle tunneling Hamiltonian
of the system.

As we already mentioned, we suppose that the tunnel-
ing for anyons is permitted only near some quasi Fermi
energy, corresponding to the potential near the edges of
the sample. One would then expect that the quasipar-
ticle tunneling from one edge of a narrow constriction
to another edge is resonantly enhanced if it proceeds
through a proper bound state of an impurity, described
by some smooth potential relief. We believe that this
potential distribution is mostly determined by the impu-
rities and is the same near all FQHE states. We ignore
the Coulomb interaction between quasiparticles account-
ing the Coulomb forces implicitly in the very fact of the
existence of fractionally quantized Hall states and frac-
tionally charged quasiparticles.

In a strong magnetic Beld the quasiparticles are moving
along the lines of equal potential. Kivelson [6] proposed
to treat the many-body bounded state at the impurity
as consisting of one-particle orbits lying completely one
inside another, so that the orbit of an additional quasi-
particle encloses the Aux,

where Po = hc/e is the fiux quantum for an electron,
Po = Qgp is the flux quantum for a quasiparticle (anyon)
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with the charge e" = e/q, N is the number of quasi-
particles captured by the impurity, and m is the angu-
lar momentum of the tunneling quasiparticle. The first
term on the right hand side of Eq. (1) is required by
the gauge invariance, while the second one simply shows
that each quasiparticle is bound with one flux quantum.
The energy of ¹ nion states characterized by two inte-
ger parameters N and m, which semiclassical meaning is
defined by (1), has been found exactly for a special case
of quadratic impurity potential [9].

At a given gate voltage VG, the area A enclosed in the
trajectory corresponding to the Fermi level is the same
for any quantized value of Hall conductivity. Therefore,
the interval in the magnetic field between two consequent
bound states of quasiparticle is b,Bq ——Pp/A if the num-
ber N of quasiparticles is fixed. The scaling, consistent
with these intervals, was observed experimentally.

However, during the tunneling the number of quasi-
particles N coupled with the impurity changes by one. It
corresponds to the change of the flux 4 by a single flux
quantum 1))p instead of Pp = q(W)p. Corresponding periods
6By = Pp/A have not been observed experimentally.

The solution of this puzzle lies in the fractional statis-
tics of quasiparticles. Consider the situation when N
quasiparticles are initially bound by the impurity, and
the tunneling quasiparticle arrives at an orbit enclos-
ing all of them. In the qussiclassical approximation, the
wave function of this quasiparticle will gain a phase fac-
tor z = exp(2n'iN/q) after each complete revolution over
the quantized orbit. More accurately, it is multiplied by
z(1 —p/2), where p (( 1 is the total probability of tun-
neling from the impurity to either the left or right edge.
The total tunneling amplitude contains a series

1
tl, R

——) z (1 —7/2)" = (2)

Usually the resonant enhancement of the tunneling hap-
pens when all the amplitudes corresponding to different
numbers of revolutions in (2) are coherent, i.e. , z = 1.
This is obviously the case for the usual Fermi quasipar-
ticles (v = 1). For a fractional value of v, the contri-
butions of q consequent revolutions almost cancel each
other. Thus the resonant tunneling is suppressed unless
N/q is an integer In other. words, the tunneling of an
anyon is resonantly enhanced only if an integer number
of electrons are already bound by the impurity. This sim-
ple selection rule restores the scaling suggested in Ref. [5]
and is in agreement with the experiment.

The scaling of the oscillation intervals versus the gate
voltage 6V~ [5] is also easily reproduced. As we change
the gate voltage, the geometry of the charge distribution
changes, but this change is the same for all values of v. At
a fixed magnetic fleld B the change 6V~ corresponding
to a new resonance is determined by the change of the
area

b A = ACp/B,

where b,4 is the change of the flux through the trajectory
to reach the next resonance. As we have already estab-
lished, EC = qtf)p for the resonant tunneling at v = p/q.
On the other hand, the value of the magnetic field B„,
corresponding to the filling factor v, is approximately
1/v times Bi. As a result we obtain h, A = pb, Ai and
b,Vg ——phVgi.

These intuitive and semiclassical arguments are sup-
ported by direct calculations in the framework of Wen's
theory of edge excitations [10]. Simultaneously we find
the distribution of edge quasiparticles over momenta to
confirm the conjecture on its Fermi-like character [5]. All
calculations have been performed for special values of
v = 1/q, where q is an odd integer.

In a restricted geometry without impurities, the only
low-lying excitations are edge excitations [11]. In the
simplest case v = 1/q, q odd, there exists only one bo-
son branch of edge excitations, usually called magneto-
plasmons. Physically, such excitation corresponds to a
charge drifting along the edge in external magnetic field
B and edge electric field E with the velocity v = cE/B.
Because of the incompressibility of the FICHE liquid, any
quasiparticle created in the bulk causes the deposit of a
corresponding amount of charge at the edge, effectively
changing the vacuum of edge phonons.

The Hamiltonian associated with such edge waves [12]
is extremely simple: It is just a combination of a rotator,
labeling different edge vacuum states, and an infinite set
of oscillators, describing the edge magnetoplasmons,

7r2
OO

H~s, = huv ——evvrpp+he ) mat a (4).
m, =1

Here ur = 2n'v/L is the classical frequency of rotation of
the quasiparticle around the edge; the operator of "angu-
lar momentum" np, counting the increment of the num-
ber of quasiparticles from some reference state, obeys the
usual commutation relationship with associated angular
variables [Pp, sp] = i, operators at, a„are usual Bose
operators for the edge magnetoplasmon with momentum
k„= 2qrn/L, and I is the total length of the edge. Com-
pared to the usual chiral edge Hamiltonian, we intro-
duced the effective chemical potential p„accounting for
the possible shift of vacuum state with the change of the
magnetic field or the gate voltage.

The operator of creation of quasiparticle

at the point x of the edge is associated with the chiral
Bose field

2'
P(x, t) = Pp + harp (x —vt)

Lq
(a$ eik (2:—vt) a e—ik„(x—vt) )

n)p
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obeying the commutation relationship

&4's, ~ = 2n. iv b(x —x'),

I I I I I

pp=o

Iv=3

and related with the charge density p = (e/27r) 8$/crx
at the edge. The permutation relations for anyon opera-
tors (5) are

To fin the distribution of edge quasiparticles over mo-

menta, it is necessary to calculate the Fourier trans-
formation G& of the simultaneous correlation function

(x —x') = (@f(x, t)Q(x', t) ) . Straightforward calcula-
tion shows that Gz can be represented as a product

G(p') = 9 (p')
exp(Pp'v) + 1'

where the me momentum p' = p —p~, p~ is the Fermi mo-
mentum, v is the drift velocity along the edge for both
the chiral field and anyons, and

I I I I I I l I I I

—12 —6 0 6 12

FIG. 1.G. 1. Non!inear resonant tunneling current I (arbitrary
units) versus the interedge voltage ( = PV expressed in the
units of temperature at different values of the bound state
energy p„

particle approach.
One would expect the resonant enhancement of the

tunneling when the energy gap e:—E —E
v[hcu(N 1 2—

1V = N+1 N

&[ ( +1/2) —ep, ] required to transfer the particle from
the edge to the impurity is small compared with the inter-
level distance. However, in the generic case it turns out
that the equilibrium averages similar to (Qf (y)Q, (y')P~)
acquire nonzero phase 27rlV/q when one of the variables
makes a complete loop around the boundary. This phase
breaks the symmetry and is the Berry phase in this
model; it is the exact consequence of the fractional statis-
tics and does not depend on the distribution of edge
phonons. As usual, the broken symmetry leads to a selec-
tion rule for the allowed transitions; namely transitionsN: N + 1 are suppressed unless N/q is an integer.
This statement coincides with our conclusion extracted
from the semiclassical model. In contrast to the previous
derivation, we made no assumptions about the geometri-
cal properties of the orbit of the tunneling quasiparticle.

The factorization (9) grants the Boltzmann distribu-
tion for the probabilities of difFerent states of the impu-

rity in equilibrium. In the presence of the interedge po-
tential difference, however, the impurity population de-

pends on the tunneling probabilities. The current-voltage
dependence (see Fig. 1) is highly nonlinear and asymmet-
ric, especially in the vicinity of the resonance. Details of
the calculations will be published elsewhere.

In conclusion, we have found new selection rules for the
resonant tunneling of quasiparticles in the FICHE, aris-

ing from the broken symmetry specific to anyons. The
equilibrium momenta distribution of the edge quasipar-
ticles has quasi Fermi properties with the temperature-
dependent density of states. This explains the appear-
ance of the resonant tunneling effects in the anyonic sys-

(2irT
y~(p') = const x

I v )
x cosh(p'v/2T).

[
I'(~/2 + ip'v/2+T) ['

The second factor in (9) is the usual Fermi distribu-
tion, while the first one can be treated as a temperature-

ependent density of states; it is an even functi f
= 0 the density of states g~(p') has a singular-

ity oc [p'[" i [11] and diverges at the Fermi level. The
singularity is smeared out at a finite temperature.

To investigate the tunneling, we model the impurit
as an additional edge with associated Hamiltonian of the
form (4). The perimeter I, of this edge is supposed to be
small enough, so that the minimal phonon energy hu; is
large compared to the temperature. The outer edge, on
the contrary, is supposed to be in the thermodynamical
limit; it serves as a thermostat.

The many-body quantum mechanical states at the im-

purity are well defined at the limit of a small tunneling
coupling

I& —— x ytx, y ~x, y +H.c.,

where @f(y) is the creation operator of quasiparticles at
the outer edge and @;(y) is the annihilation operator for
the edge quasiparticles at the impurity (inner edge). This
allows us to reduce the evolution equations of the density
matrix at the impurity to a set of kinetic equations, de-
scribing evolution for probabilities W~ = ('P~) to have
exactly N quasiparticles at the impurity, where P~ is'
the appropriate projection operator. Relationship (9)
makes these equations look exactly like kinetic equat'qua lons
or ermions, thus explaining the success of a naive one-
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tems and, in particular, the scaling properties of the
mesoscopic pattern measured in the experiment [2,3].

Upon the completion of this work, we received the
preprint [13],where the renormalization group equations
for the problem of resonant interedge tunneling are solved
numerically in a different geometry. The authors did not
consider either scaling properties of the resonant effects
or the momentum distribution of quasiparticles. Their
main emphasis was the line shape.

V. L. P. is indebted to Steve Kivelson for numerous dis-
cussions and to J. S. Langer and Institute of Theoretical
Physics in Santa Barbara for the hospitality extended to
him at the initial stage of this work. This work was par-
tially supported by NSF under Grant No. PHY89-04035
(V. L. P.) and the Soros Foundation under Grant No.
S92.56 (L. P. P.)
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