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Diffusion-Limited Aggregation as Branched Growth
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I present a first-principles theory of diffusion-limited aggregation in two dimensions. A renormalized
mean-field approximation gives the form of the unstable manifold for branch competition, following the
method of Halsey and Leibig [Phys. Rev. A 46, 7793 (l992)]. This leads to a result for the cluster
dimensionality, D = 1.66, which is close to numerically obtained values. In addition, the multifractal ex-
ponent r (3) D in this theory, in agreement with a proposed "electrostatic" scaling law.

PACS numbers: 64.60.Ak, 05.20.-y, 68.70.+w

Difl'usion-limited aggregation (DLA) is a model of pat-
tern formation in which clusters grow by the accretion of
successive random walkers [1]. Each random walker ar-
rives from infinity, and sticks to the growing cluster at
whichever surface point it first contacts. Only after the
accretion of a walker does the next walker commence its

approach to the cluster. The clusters thereby obtained
are fractal in all dimensionalities d ) 1, and are qualita-
tively and/or quantitatively similar to patterns observed
in such diverse phenomena as colloidal aggregation, elec-
trodeposition, viscous fingering, and dielectric breakdown
[2].

At the heart of the problem of diffusion-limited aggre-
gation is the following question: What is the relationship
between the scale invariance of the diffusive growth pro-
cess and the hierarchical structure of the clusters generat-
ed by this process [3]'? A preliminary, and incomplete,
answer to this question was provided by this author in

collaboration with Leibig [4]. In this work, it was hy-

pothesized that the quantitative process by which one
branch screens, i.e., takes growth probability from, a
neighboring branch, has a specific form, independent of
the length scale on which this process takes place. This
assumption allows the development of a qualitatively
correct theory, which yields multifractal scaling of
growth probability, as well as agreement with a pheno-
menological scaling law, the "Turkevich-Scher" law, re-
lating the scaling of the maximum growth probability
over all sites on the cluster to the dimension of the cluster
as a whole [5].

In this Letter, I shall present a more complete and a
priori theory of diffusion-limited aggregation in two di-
mensions based upon a specific mean-field calculation of
the dynamics of branch competition. Because the mean-
field approximation is implemented on all length scales, it
is perhaps better to regard this theory as an ansatz solu-
tion in the case where certain types of Auctuations on all

length scales are neglected, while others are included.
This specific model allows verification of all qualitative
aspects of branch competition that were advanced as
(reasonable) hypotheses in Ref. [4]. The result obtained
for the dimensionality of the cluster, a=1.66, is within

3% of the often quoted value D =1.71 obtained from the

d lnnb
=x —y.

The right-hand side of this equation is a function only of
x and y. Now x will obey an equation of the form

=G(x,y;n; jt/t;] ),
d lnnb

(2)

where jib;] is some parametrization of all of the variables
describing the structure of the cluster. In Ref. [4] we as-
sumed that by averaging the right-hand side of this equa-
tion over these parameters jp;], one obtains dx/d lnnb

=g(x,y), where the right-hand side is now only a func-

scaling of the cluster radius of gyration in numerical
studies. An additional scaling law (the "electrostatic
scaling law"), relating the multifractal exponent r(3) of
the growth measure to the dimensionality D by D = r (3),
is seen to be exact within this theory [6].

In the growth process, each particle attaches itself to
a unique "parent" particle in the preexisting cluster.
Furthermore, the cluster is observed to be a branched
structure, with no loops and with each particle having

asymptotically zero, one, or two "children, " i.e., particles
to whom it stands as a parent [7]. Very rarely particles
have more than two children; primarily for reasons of
convenience I neglect this possibility.

Consider a particle with two children. Each of the two
children separately, with all particles descended from

each, I term a "branch. " Thus these two-child particles
are parents of two branches, which occupy neighboring
regions of space. The total number of particles in one
branch I term ni, and the total in the other n2. The total
number of descendants of the parent particle is thus

nb ——n]+n2. Now consider the next particle to accrete to
the cluster. I say that this particle has a total probability

pi to stick anywhere on the first branch, and a total prob-
ability p2 to stick anywhere on the second branch, yield-

ing a total probability pb =pi+pal.
Let us now consider the normalized quantities x =pt/

pb and y =n~/nb Clearly d. nt/dn =pt, where n is the to-
tal number of particles in the cluster, and we are neglect-

ing fluctuations of 0(Jnb) Thus y obe.ys the following
equation of motion:
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tion of x and y. Given this function g(x,y), one has a

closed system of equations describing the evolution of x
and y as functions of Inni, .

By symmetry, g(x,y) = —g(1 —x, 1
—y), so (x,y)

=(z, 2 ) must be a fixed point of this process of com-

petition between the two branches. In Ref. [4], we ex-

plored the consequences of assuming that this fixed point
is hyperbolic, with the unstable manifold emerging from
the fixed point terminating in two stable fixed points at
(x,y) =(0,0) or (x,y) =(1,1), the latter representing the
situation in which one branch has been completely
screened by the other. This assumption will be explicitly
verified in the calculation below.

If the central fixed point at (x,y) =( 2, 2 ) is hyperbol-

ic, then branch pairs which commence their existence
(with nb —1) near the unstable fixed point will be quickly
drawn onto the unstable manifold. Linearizing the sys-

tem of equations for d(x, y)/d Inn' about the central fixed

point, the hyperbolic assumption implies that there will

be a stable and an unstable direction; the eigenvalue cor-
responding to the latter direction we define to be v.

When a pair of branches is first created by a tip-

splitting event, its initial growth up to the stage at which

nb» 1 is determined by complicated microscopic dynam-

ics, which do not recognize the existence of the unstable
fixed point. Thus we expect the probability that a newly

created branch pair will be a distance e" from the unsta-
ble fixed point will be p(e« l)deixe" 'dr, we are as-

suming a constant probability density of branch creation
near the unstable fixed point. This assumption has been

specifically verified by numerical study in Ref. [41. The
choice of e" for this initial distance ensures that position

along the unstable manifold in the x-y plane can be
parametrized by the variable enb

It is possible to relate the eigenvalue v to the cluster
dimensionality D by the following argument [4]. Consid-
er the strongest branch in the cluster, that obtained by al-

ways following the stronger child (with the larger values
of x,y) at each branching. The total number of side-
branches (or branch points) from such a branch is -r,
where r is the cluster radius. In order that the cluster
have a dimension D & I, a number —1 of these side-
branches must have a total number of particles n, the-
total number in the cluster. A sidebranch obeying this
criterion must have en —1, so that at that branching,
both descendant branches are roughly equal in size. The
probability of this happening at any particular branching
is f" dip(e) ~n", and there are -r different side-
branchings at which this might occur. Thus rn"-1, or
D =1/v.

In order to determine g(x,y), we turn to an explicit
description of the growth process [6,8]. Suppose that we

parametrize the accessible surface of the cluster by arc-
length s. If a particle attaches at the surface point s', it
thereby reduces the growth probability at all points s for
which ~s

—s'~ & a, where a is the particle size. This is be-
cause a certain number of the random walks that would

p(s)p(s')
[f; S"p(S")]2 ' (4)

where the integral in the denominator is the total growth
probability between the points s and s'. It is convenient
to parametrize the interface by this quantity, the "growth
probability" distance between points z(s), defined by
z(s') —z(s) =f,'ds "p(s"). Then our fundamental equa-
tion becomes

dp(z) ', 1-p(z) dz', —h(z)b(z —z') p'(z'),
dn 4 (z —z') 2

(s)
where a serves as an ultraviolet cutoff to prevent diver-

gence of the integral, and h(z) is related to h(s) and to
the function z(s); its precise form is of no interest to us.

I wish to use this equation to determine the function
dx/dinny =g(x,y). Repeated application of the chain
rule yields

r

dx nb dp I dp2

d Innb pt, , dn dn
(6)

Consider a branch with probability p' and a number of
particles n' We sup. pose that this branch extends from
z=0 to z=p'. Equations (5) and (6) imply that if we
can write p (z) on this branch (and by extension, all oth-
er branches) as

(p') '
p2(z) = ~, f(z/p'),n'

where f(z) is a universal function that depends neither
upon p' nor upon n', then we will be able to write
dx/dlnnb =g(x,y), with the right-hand side a function
of x and y alone. Equation (7) is motivated by the fact
that p (z) must be proportional to (p'); the dependence
on n' is specifically chosen to lead to an n'-independent
g(x,y). Only if we can find a method of computing an
n'-independent f(z) will this ansatz be justified.

1229

have reached s previously are now obstructed by the new

particle at s'. If the probability that a particle lands at s'
is p(s'), and the probability that a random walker goes
from s' to s without contacting the surface is H(s, s'), this

implies that

dp(s) ds'[H (s,s') —h (s )8(s —s') ]p (s'), (3)
dn 4

where we have modeled effects on the scale ~s
—s'( & a by

the b function, the coefficient of which, h(s), is set by the
conservation of the total growth probability, fds p(s) =1.
Note that in Eq. (3) two factors of p(s') appear —one
corresponds to the original probability that a particle
lands at p(s'), the other to the potential trajectories ar-
riving at s that are blocked by such a particle.

For a« (s —s'(«an, conformal transformation shows

that the function H(s, s') is given in two dimensions by
the simple form [9]
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Thus the crux of the problem is this "branch envelope"
function f(z), which represents, with the appropriate nor-
malization, the distribution of growth probability in dif-
ferent regions of a branch. Now, in our picture, each
branch can be divided into two distinct sub-branches,

which compete according to the dynamics established by
g(x,y). Our central mean-field assumption is that we
can compute f(z) by averaging the envelope functions
f(z) of these sub-branches over the stochastic parameter
e appropriate to the competition of these two sub-
branches. In this way we obtain the following equation:

x (fnb) z [1 x(Enb)]
z = dope f + f

y (enb ) x (enb ) 1 y(—Enb )
1
—-

I x(e—nb )

where x(enb) and y(cnb) give the values of x and y along the unstable manifold as functions of nb and the stochastic pa-
rameter c. For convenience, we are defining p(e) for negative values of e as p( —e) =p(e), with x( —g) =1 —x(rl)„
y( —iI) I —y(iI). This leads to the relatively compact expression of Eq. (8). For large nb, this equation has a solution
independent of nb, which is determined by

d lrll" ' " f + f f()— (9)
y(rI) x(rI) 1

—y(rl) I —x(rl)

Since the integrand goes to zero as q ~, we are justified in taking the small e form for p(e).
Of course, in order to perform this integral, we must have the form of the unstable manifold, and thus we must al-

ready know g(x,y). We can determine g(x,y) from f(z) by simply integrating Eq. (5) over the appropriate intervals.
We do not integrate over regions exterior to the two competing branches, but only investigate the inAuence of the two

branches on one another. Skipping some tedious algebra, we may express the result as follows. Defining a function

y(u) by

+l
y(u) dz ——

JP z
f(z),z+u

(10)

we can write

g(x,y) -x ( I —x) ~ 2—y(~ ) — y
x (I —x)' x
y (I —y)x I —x

2 y(~)—1
—x

1
—

y

x 1
—x

v(l —x) x

SP S ~n (12)
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The reader should note that we have a circular pro-

cedure, because g(x,y) is determined as a function of
f(z) by Eqs. (10) and (11),while f(z) is determined as a

function of g(x,y), and in particular by the unstable

manifold in the x-y plane as determined by g(x,y), by

Eq. (9). Thus in practice we are looking for a solution of
Eq. (9) where the functions x(rl) and y(rl) are implicitly

determined by f(z).
I have numerically obtained the unique solution to Eq.

(9) under these conditions, which is displayed in the inset

of Fig. I [10]. This validates our assumption regarding

the scaling with n' in Eq. (7). The function g(x, y) deter-

mined from this function has all of the necessary qualita-

tive features; in particular, the fixed point at (x,y)
=(2, z ) is unstable and hyperbolic, and the unstable

manifold leads from this point to stable fixed points at
(x,y) =(0,0) and (1,1), as illustrated in Fig. 1. Figure I

also shows numerical results for branch competition. The
value of the unstable eigenvalue v is v =0.6020, implying
that D I/v= ).661, which is within 3% of the standard

numerical result D = 1.71.
In addition, this theory automatically agrees with the

electrostatic scaling law, which states that

where the integral is over the entire cluster surface. This

is equivalent to the more usual statement that r(3) =D.
In Ref. [4], we demonstrated that the multifractal ex-

ponents o(q) defined by jdsp(s)~~n ~i can be ob-

tained from the integral condition [11]
IP

x(iI)q + [I —x(rI)]'
I 0 (13)

(iI) ~'v' [I —y(iI)] "'
By integrating Eq. (9) from z=0 to z= 1, one obtains

precisely this criterion, with q=3 and cx(q) = I, in agree-

ment with the electrostatic scaling law. Though the elec-

trostatic scaling law thus appears in a natural way in this

theory, one should not say that it is predicted by this

theory unless the solution obtained to Eq. (9) is stable. It

may be that it is necessary to impose the electrostatic

scaling law as a constraint to ensure this stability [10].
From Fig. I it is clear that, although in some sense the

unstable manifold that we have calculated is an accept-

able average trajectory, the numerically obtained trajec-
tories do exhibit some dispersion about this average. This

has significant results. The Makarov scaling law predicts

that der(q)/dq(~-i I/Do [12], where Do is the surface

fractal dimension (which according to some studies is

significantly less than the radius-of-gyration dimension 0
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FIG. 1. Trajectories of branch competition in the x-y plane.
The light solid trajectories are numerical results from Ref. [4)
for specific branch pairs. in growing DLA clusters. The heavy
solid line represents the unstable manifold predicted by this
Letter, which is quite close to the "average" numerical trajecto-
ry. The inset shows the computed branch envelope function
(z).

[13].) My result, from Eq. (13), is der(q)/dqis-|=0. 71,
which is significantly different from the Makarov result.
In practice, this quantity is quite sensitive to the way in

which the unstable manifold approaches the stable fixed

points at (x,y) (0,0) and (1,1); since the numerical tra-
jectories are quite dispersed in this region, I do not expect
a good result for the Makarov scaling from a one-
trajectory theory. However, the theory outlined in this
Letter can be easily generalized to account for the possi-
bility of trajectory dispersion, which may lead to better
agreement with the Makarov result.
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