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A unified model theory of the anomalous transport of high temperature plasma, L mode and 0 mode,
is developed. Self-sustained turbulence theory for the pressure driven mode is extended, incorporating
the efl'ect of inhomogeneous radial electric field E,(r) to cover two electrically bifurcated states. Strong
reductions of heat and current diN'usivities, viscosity, the Auctuation amplitude, and correlation length
are predicted in nonlinearly sustained turbulence. A consistent radial width of E,(r) is obtained. A new

stability window is also found.
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After the discovery in the ASDEX tokamak [1] of the
H mode, which is associated with the sudden reduction of
the thermal conductivity g, the energy flux per particle
divided by the temperature gradient, at some critical tem-

perature, the H mode has been observed in almost all

tokamaks [2]. The change is most prominent near the

edge, and is referred to as a transport barrier. The H-

mode characteristic is a generic nature of high tempera-
ture toroidal plasmas.

The understanding of transition physics has been ad-

vanced. A theory based on the bifurcation of the radial
electric field E, was proposed, involving the interaction of
the ion orbit loss and E„[3].The sudden change of E„ in

a narrow edge region has been confirmed by experiments

[4], and an external bias could cause H mode [5]. A rap-
id change of ion loss at the transition was observed [61.
Elaboration of the model of the transition has followed

[7-10]. In H-mode plasmas it is now considered that E„
probably takes a large negative or positive value, the

magnitude of which is given by )X~ —1 (X—=ept, E„/T, p~:
poloidal ion gyroradius, T: temperature). The effects of
E, on the fluctuations and anomalous transport have been

theoretically analyzed and the steep radial gradient of E,
was found to improve linear stability of various modes

and to reduce the fluctuation levels [11-16]. Neverthe-

less the understanding of transport in the H mode is not

complete, since it ultimately requires that of the L-mode

plasma as well.
Recently, a new development of the theory for the

self-sustained turbulence and associated anomalous trans-

port in toroidal hot plasmas was explored [17,18]. It was

found that nonlinearily driven viscosities and therma1

conductivity play important roles in controlling the Auc-

tuation. The balance between them determines the self-

sustained turbulence and associated transport. The
theoretica1 model of the L-mode transport was obtained
based on the solution of a nonlinear instability.

In this article, we apply this method to the tokamak
plasma, incorporating the eA'ect of the inhomogeneous F.„

to make a bridge between L- and H-phase plasmas.
Based on this approach, it is now possible to construct a
unified transport model of the L-mode phase and the H-

mode phase. The anomalous transport coeIIicients are
obtained in a unified and explicit form in terms of the
profile parameters. Strong reductions of the thermal con-
ductivity, the electron and ion viscosities, It, and p, and
the turbulent level in the H-phase plasma are explained.
The change in the fluctuations is also analyzed. Further-
more, an additional stability window due to E„' is dis-

covered in the higher pressure regime. The anomalous
ion viscosity determines h, , the typical scale length of E,
[19]. Self-consistent solutions of LL and It are obtained.

We study a circular tokamak with the toroidal coordi-
nates (r, 8,(). The reduced set of equations [20] is em-

ployed. The basic equations consist of the equation of
motion,

n;m;[d(V y)/dl —pV IP}

=B2Vs' 9+B[Vp x V(2r cos8/R)]. g,

the generalized Ohm's law, E+vxB=J/tr —V~2XJ,
the energy balance equation, dp/dt =gVi2p. Notations
are as follows: m; is the ion mass, n; is the ion density, 4
is the static potential, B is the main magnetic field, p is
the plasma pressure, J is the current, o is the classical
conductivity, and X is the current diffusivity (A, cr-lt, ).
The Ex B nonlinear interactions are renormalized in the
form of Z, p, and ) . The detailed derivation was reported
in Ref. [21). The derivative d/dt is |)/8t+ [p, ]/B where

[, ] denotes the Poisson bracket. The Doppi«shif«f
frequency is oA'set by the homogeneous Exs rotation.
Only the contribution of E,' to d/dt is retained.

To reduce the partial diA'erential equation to an ordi-

nary difl'erential one, the ballooning transformation [22]
is employed as

p(r, 8,() =+exp( —im8+in()
m

x„p(ri) exp[imrt inqtijdtl—
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(q is the safety factor) for the microscopic modes. The problem is essentially two dimensional, but the ballooning for-
mulation may be applied by assuming formally the fiow shear frequency to be of the order of 1/n [23,24]. Eliminating p
and J from the basic equation, we have the eigenmode equation for p:

-+ ' +KF
dn y+:"F+AF2 dn dn

+a[x+cosrl+(srl —asinrl)sing]p — y+cop~ +MF F y+roEi +KF p=0. (1)1 d
dg dg

Xp = rug i
— —A(1+M/K) FKdp 2 dp
F diI' dg,

(4)

The stability boundary is examined by the following
perturbation method. Let [uj] be the jth eigenfunction of
the original Weber type equation (roEi =0, Xp =0). The
most unstable fundamental eigenmode uo and the first
harmonics ui are expressed as un=a'I n 'I expt —gg l
2] and ui v2/i' ~ rlexp[ —

farl /2], respectively, where

Ho(q +a —s)N [I+C(s)N ], Ho~a ~kg

We use the normalizations r/a r", r/rg~ &, grw~/a'—g, pr„,/a'- u, &~p/pooa'- I/a, kr~~lpoa' —X,

rz~ —=a +porn;n;/B~, yrpz y, and notation = n q /8,
A=&n q, K gn2q, M p n2q2, y is the growth rate,
s r(dq/dr)/q, F =1+(srl —asinil), x'=——(rlR)(1
—I/q2) (average well), Bz Br/qR, a q P'R/a, o r/
R, a and R for the major and minor radii, P=2pop/B,
and P'=—de/dr". The parameter roti denotes the shear
effect of the radial electric field,

roy ) r ~p (dF.„/dr) (srB)

If we neglect roti, Eq. (1) reduces to the transport-driven
ballooning mode equation for the L-mode plasma [18].
The ideal magnetohydrodynamic mode equation [22] is

recovered by further taking I/o k g P 0. In order
to apply the ballooning formalism, the subsidiary order-
ing ros~-O(a) is adopted [24]. It is assumed that
I/cr 0, for the plasma of our interest.

Equation (1) predicts that the current-diffusive bal-

looning mode has a large growth rate. The stability
boundary of the nonlinear mode determines the relation
between the anomalous transport coefficients [j,A.,p] and

the plasma inhomogeneity [P', E„']. We study here the
case when the ballooning mode is caused by the normal
curvature, not by the geodesic curvature, i.e., 2 +a& s.
For the strongly localized mode, where s2iI ( I and
rt~ (1 are satisfied, this eigenvalue equation is approxi-
mated by a type of Weber equation, where we neglect the

dp/dii term as in Refs. [18,21]. The effects of roti are in-

corporated by a perturbation method. These analytic
simplifications with y 0 reduce Eq. (1) to

d' pldi' l+( aA/K)[l —(-,' +a —s)rl']p

—MA[1+3(s —a) rl ]p+Xp 0, (3)

where the operator X is defined as
r

9 1+ 4 + 25(s —a) 2+C
8 3af 4(1+2a —2s ) 1+C

' i(2

x 1+ 1+
3af 5af f2 (8)

From the definition of Ho and Eq. (7), the anomalous
transport coefficient with the F.„' contribution is obtained
as

f(s) 'a' '(2/g)(j/P) ' '
1+G immi

(9)

The numerator of Eq. (9) is the L-mode transport co-
efficient gL [18]. The effect of E,' on the thermal conduc-
tivity is quantified in Eq. (9), which unifies the L- and
0-mode plasma transport. The coefficients are explicitly
expressed in terms of the equilibrium quantities, since the
self-sustained turbulence is determined. The suppression

of the transport is significant when roEi —I/QGi. A no-
ticeable reduction of g occurs when cogi approaches uni-
ty.

Figure 1 shows the results for the transport coefficient.
Equation (1) is also solved numerically. The dependence
of Z/gL on ros~ is illustrated in Fig. 1(a) with other pa-
rameters fixed. The dotted line indicates the Lorentzian
fit of g/gt, , giving g/gL —1/(I+gcogi) with g=24. The
result confirms the theoretical result of Eq. (9), with a

xiu ', N is the normalized mode number N n q
&&gP/a, and C(s) 3(s —a) (q +a —s) '. The most

unstable mode satisfies N =1/f(s) where f(s) was given

as (1+2a —2s)42+C(s) [18]. The odd and even parity
modes are mixed by the operator X when roE|WO. Writ-
ing the eigenfunction as

p(il) =up+ pui (5)

the first order correction to the eigenvalue is given ap-
proximately as

H &OJZ( I)&I [Z(O)
g2 2(2

where H=HON (1 —N ). Substituting the eigenfunc-
tions and N, the integrals (0)X~I) and (I~X(0) are ob-
tained. Equation (6) is rewritten as

Ho = [I+G~(a,s)ro~~](1+2a —2s)f(s),
where
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The fluctuation level is also reduced. The renormahzed

diffusivity satisfies g-(rE/8) /gn q [21], which gives

the estimate p/8-g. Using Eq. (9), we have

10
ep/T- (gLeB/T) (I +G icos i ) (i 3)

0-6

10
I

0.5
0-7

0 2 p-i
I I I I I Ill

1a

FIG. 1. Dependence of the normalized thermal conductivity
gon aiei (a) and on a (b). Parameters are gi/Z 1, 2/g l0
s f, q 3, ands 0.5. In (a) a is fixed as0.3 and the dotted
curve shows the fitting Z/gi, I/(I+geo)i) with g=24. In (b)
the arrow indicates typical change in the L- to 0-mode transi-
tion.

kg~ b a '(I+Girapi), (io)

where b is the collisionless skin depth. The radial corre-

lation length I, is also reduced. Its value is given by I,
(kP&

' and (k2& fn'qzs'rl'p(if)'dg[f p(rl)'drl]
(k, ) being the average of the squared radial wave

number of the fluctuations. Substituting Eq. (5), we

have (k, ) [nzqzs /2(l(I+2p2). Noting the relation

p (11&10&/2&, I, is given as

2f(s)s '&ga (1 i)
1 +G (a,s )ap) i

G, (a,s) 3 + 1 +23s a

8JZ, f(s) (i 2)

numerical correction of Gi. For the parameters of the

calculation, Gi is predicted to be 12; a factor 2 enhance-

ment in the coefficient Gi is partly due to the finite value

of the magnetic well (x. —0.29 in Fig. 1) which is not

kept in Eq. (9). When rosi becomes larger, the suppres-

sion becomes more prominent. Figure 1(b) demonstrates
the a dependence of Z for rosi 0 (L mode) and for the

case with finite aigi. The suppression of g relative to gL
is stronger in either the small a or large a limits, as is

shown in Eq. (8). The reduction of g at large a in the

case of aisiWO (which is related to second stability) is

important for the establishment of the H mode. When

the L mode plasma becomes the H mode, the parameter a
would be enhanced from 0(0.1) to above O(l ). Figure
1 (b) shows that the enhancement in a by a factor of 10

allows a reduction of g by a factor of 10 when the reduc

tion from aisi is effective. A numerical solution of Eq.
(1) confirms that similar results hold for a wide range of
the parameter s.

The theory also predicts the change in the fiuctuation

characteristics. The relation nq (a/gP)'/ N shows that

the poloidal mode number becomes larger as g becomes

smaller. Combining Eq. (9) and the estimate of ke( m/

r) for the L-mode turbulence [18],we have

The coefficients Gi and G, have a similar magnitude.
The thickness of the transport barrier, b„and p are to

be determined self-consistently. In this paper the radial

derivative E,' is simply estimated as E„/5 or XT/epr/3. . It
was shown that 6, reduces to the thickness of the source

region (p~) in the limit of p 0, and 5- jp/v; in the

large p limit [19,25] (v; is the ion collision frequency).
We may use the interpolation formula

a- Qp'+ p/v (i4)

apart from a numerical factor of order unity. Substitut-

ing these relations into rag i and using the relation P -g
[18,21], we have a convoluted equation for p in terms of
Las

2r

p pr, 1+ L
pps 1 +p/v;pr

where pL gg. This equation shows that p (and g as
well) is reduced by an increment of 1X1. Order-of-

magnitude reductions of p, g, and A, from L-mode values

are expected for 1X1—I.
It is a straightforward extension to study the infiuence

of the curvature of the E, profile E„" The . result is given

as

(i5)

(i6)
1+Giai)i+G2aik2

where aig2 (aE,"/s 8)rgz, E" d E,/dr, and G2- 5

x (b/a) 2. Details will be given in a forthcoming paper.
In summary, we have developed a unified theory of

anomalous transport in the low confinement mode and

high confinement mode in toroidal high temperature plas-

mas. The nonlinear self-sustained turbulence theory for

pressure driven modes has been extended to make a
bridge between the two bifurcated states. In this theory,
the EXB nonlinearity is renormalized in the form of a

diffusion operator. To determine the diffusion coefficient,

the mean field approximation for the dressed test wave is

employed.
The explicit form of g is obtained [Eq. (16)], and an

order-of-magnitude reduction of g due to the E„' effect,
regardless of the sign of E„', is predicted. In our frame-

work, not only g but also p, (A, ) and p are reduced by a

similar magnitude. The theory predicts that there should

be established diI'erent transport barriers, namely, for the

particle, heat (g), current (k), as well as momentum,

E,(p) in the H mode. The width of the strong E, region

in the H mode is affected by the reduction of p due to E,'.
The self-consistent width is estimated [Eq. (15)l.

The ffuctuation level is also found to be reduced [Eqs.
(10). (11» (13)] due to the 1E'1 effect. The mode num-
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ber of the least stable mode becomes higher for a fixed
pressure gradient. Furthermore, another stability window

due to E,' is found, which resembles the second stability
windo~ due to low s.

We have adopted the ballooning representation. This
would limit the applicable range to to~i/a-O(l ). It was
shown [24] that the large-I]ow-shear limit for the classi-
cal ballooning formalism converges properly to the
small-Aow-shear limit of the general theory. The exten-
sion to the case of tagi/a»1 is really necessary, since
strong reductions of 2, p, and A, are expected from Eq.
(I) when raEi approaches unity. The recent progress on

two-dimensional theory [24,26] would enable this exten-
sion. The other simplification is that the Prandtl num-

bers, p/g and (a/b) A/g, are taken to be unity. They can
depend on the change of ks, which is caused by raE~

However, this dependence is found to be weak [27].
Connor has succeeded in reproducing our results on the

L mode by use of the scale invariance technique [28],
supporting the physics basis of our model. The present
result (9) is obtained except for the numerical factor.
Nonlinear simulation would give this coefficient and al-
lows us to examine the validity of the ansatz in detail.
The investigation of effects such as the diamagnetic drift
for kinetic corrections, parallel Aow or perpendicular
compressibility are necessary. These research topics are
open for future study.
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