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A method for creating integrable nonlinear accelerator lattices is presented. Fixed points for
the two-dimensional return map corresponding to the lattice are found. Minimizing the residues
(an indicator of the size of the associated island) of these fixed points by varying lattice parameters
eliminates large islands and regions of chaos. The resulting nonlinear systems have larger dynamical
apertures and are more stable to perturbations induced by, for example, error 6elds.

PACS numbers: 41.85.—p, 05.45.+b, 29.20.—c

We present a nonperturbative method for designing
nonlinear, integrable accelerator lattices. Our lattices
have the nonlinearities required for eliminating chro-
maticity, but these nonlinearities are structured so that
islands and chaotic regions, which cause particle loss, are
not present. The nonlinearity of our lattices will make
them more stable to perturbations due to error fields. By
removing the islands we obtain lattices with larger dy-
namic apertures. To illustrate our method, we show that
adding octupoles and decupoles of particular strengths
and at particular locations to the lattice of the Advanced
Light Source at Lawrence Berkeley Laboratory eliminates
islands and increases the dynamic aperture.

Linear lattices have been considered desirable, in part
because linear dynamics is easily understood. In a linear
lattice, all trajectories execute linear oscillations about
the design orbit, the closed orbit at the center of the
beam, at a frequency known as the tune, when normal-
ized by the frequency of motion around the ring. This
linear motion conserves the Courant-Snyder invariant [1].
This implies that the intersections of the trajectory with
a transverse plane in phase space lie on ellipses.

However, linear motion is unstable to perturbations.
With a resonant perturbation, i.e., one whose periodicity
matches that of the orbit, particles at some phase receive
an outward kick on each circuit. Because the tune is
independent of amplitude, the outwardly kicked particle
remains in resonance until it leaves the machine. To some
extent the situation is saved by the Kolmogorov-Arnold-
Moser (KAM) theorem [2], which guarantees a region
of confined trajectories of finite measure near the design
orbit, provided the central tune is not a multiple of 1/3
or 1/4. For this reason accelerators are designed with
lattices having central tunes far from low-order rationals.

To keep the tune far from the low-order rationals for
the range of energies in the beam, accelerators are de-
signed to have vanishing chromaticity, the variation of
the tune with particle energy, by adding sextupole mag-
nets. However, sextupoles are nonlinear elements. As a
result, the trajectories launched successively farther from
the design orbit are seen to comprise island structures or
not to be confined at all. This, consequently, limits the
dynamic aperture, the confined region of phase space.

Thus, designing towards linearity is self-contradictory.
Linearity with perturbations requires the tune to be far
from low-order rationals. Keeping the tune far from
low-order rationals over a range of energies by adding
sextupoles ruins linearity. To escape this logic, we pro-
pose that accelerator lattices be made nonlinear, yet inte-
grable, so that good confinement remains. In this Letter
we show how this can be done.

In our method, the nonlinearity needed to eliminate
chromaticity is retained, so that transverse phase space
structure does not vary with energy, but we modify the
nonlinearity so that it does not cause the invariant sur-
faces to break up into islands and chaos. Our method
does not rely on perturbation theory, and so works for
arbitrarily large dynamic aperture. The result of our
method is an integrable, nonlinear transverse focusing
system, which, by nature of being nonlinear, is stable to
perturbations [2] and has larger dynamic aperture than
the unoptimized system.

Our method is so far limited to systems of 1.5 degrees
of freedom. Thus, we concentrate on the transverse mo-
tion parallel to the bending plane of the ring and, conse-

quently, ignore the energy oscillations and the coupling
to the vertical motion. In this case the motion reduces to
a Hamiltonian of 1.5 degrees of freedom with coordinates

(x, p, s), where s is the arc length along the ring
The dynamics of this system is embodied in the return

map. The return map,

z' = T(z),
is obtained by following a trajectory from a given trans-
verse plane, at which the transverse coordinates arez:—(x, p), to its location z' in the same plane after one
circuit. Since the system is Hamiltonian, the mapping T
is symplectic [3]. For an integrable lattice, the succes-
sive iterates of the return map for any initial condition
lie on what is topologically a, circle and have a rate of
rotation about the center given by the tune, which is de-

pendent on the amplitude of oscillation if the dynamics
is nonlinear.

For the typical nonintegrable lattice, the iterates near
the design orbit lie on the Courant-Snyder invariant
curves and rotate about the design orbit at a rate given.
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by the central tune. The KAM theorem states that there
exist invariant circles with tune irrational and different
from the central tune at finite distance from the design
orbit. (This diiference is known as the nonlinear tune
shift. ) For rational tunes island chains replace invariant
circles. Associated with these island chains are p/q fixed
points, which map onto themselves after q iterations, af-

ter which they have encircled the design orbit p times.
We say that such a fixed point has rotational tune p/q
(as opposed to the tune related to the rate of rotation
about this fixed point, known as the island tune) Be.yond
some distance there are no more invariant circles; regular
structures in phase space disappear, chaos appears, and
the orbits launched in this region are not confined.

Greene's work [4] shows that the appearance of chaos
is related to the linear behavior of orbits of nearby fixed
points. This linear behavior is found by substituting z ~
zs + bz into the mapping Eq. (1), where ze is the fixed
point, and keeping only up to first order in bz. Thus,

where

Bzq = M(zq )M(z ) M(z )bz
—:M~(z~)bz,

i Z( i—i)

(2)

(3)

and the evolution of nearby trajectories is given by the
tangent map,

Z z=zl
(5)

The product M'i is a linear 2 x 2 matrix with determi-
nant equal to 1 (since the map is area preserving). The
eigenvalues are given by

Tr(M&) + g[Tr(M~)]z —4
2 )

where Tr(M) is the trace of matrix M. The eigenvalues
are either both on the unit circle and complex conjugate
(elliptic point), or they are real and reciprocal (hyper
bolic point). A convenient quantity is the residue 8,

2 —Tr(M'i)

lim R„=0.

F(v) =0, (10)

of equations. This system of equations is solved itera-
tively by a multidimensional Newton's method. We solve
the system,

bv = —F(v),

If the invariant surface does not exist, the residue limit
will diverge to infinity. Thus, local behavior of fixed
points near a surface of irrational tune determine the
existence of an invariant surface having that irrational
tune. In addition, renormalization theory [6) shows that
the low-order fixed points control the behavior of the
higher-order ones. Hence, zeroing the residues of a few

fixed points can be enough to guarantee an invariant cir-
cle near that tune.

This is the basis for our optimization method. We add
nonlinear elements that allow us to reduce the residues
of the main fixed points. (A similar type of optimization
has been used successfully for making integrable the flow

of magnetic field lines of stellarators [7].) Our reduction
of the residues is carried out with the constraint that the
chromaticity of the design orbit remain zero. This helps
prevent phase space from varying significantly with par-
ticle energy. (In certain lattices, changes in longitudinal
momentum can create island chains near the origin which
are disastrous for particle confinement [8].) We also re-
duce the fixed-point chromaticities for the same reason.

The procedure begins by examining the surface of sec-
tion to determine the critical fixed points. A set of resid
uals, F, to be zeroed are defined. Examples of residuals
are the difFerence between the residue of the design or-
bit and the desired value, the residue of an outer fixed
point, the chromaticity of the design orbit, and the dif-
ference between location of an outer fixed point and its
desired location. A few nonlinear elements (sextupoles,
octupoles, decupoles) are inserted at arbitrary locations
in the lattice. We then vary a subset v of the parameters
of the accelerator in order to zero these residuals, F(v),
which are functions of the parameter set. Thus, we wish
to solve the system,

exists if

v= lim v„
n —+oo

If 0 (R ( 1 the fixed point is elliptic, if R (0 the point
is hyperbolic, and if R & 1 the point is hyperbolic with
reQection.

Greene's postulate [4] is that the existence of an in-
variant circle of irrational tune v can be determined by
examining the residues of the sequence of fixed points
(zi, zq, ...) with rotational tunes (pi/qi, pq/qs, ...) that are
the successive continued-fraction [5] approximants to v.
In pa,rticular, an invariant circle with tune

of linear equations, for the change bv of the parameter
set that moves the set closer to satisfying Eq. (10). The
matrix

is the Jacobian matrix. For complicated lattices J can be
determined numerically. Often it is convenient to have
more unknowns than equations, in which case the matrix
equation (12) is solved by singular valued decomposition
[9]

To facilitate this method a Motif [10] based X windows

1197



VOLUME 72, NUMBER 8 PHYSICAL REVIEW LETTERS 21 FEBRUARY 1994

0.005 0.005

~ '

r
~ rL

1
~

9
"I

~:kh
~ +,~

~ . r

Mw

Pw J'
rlA

.S

j

—0.005

—0.04 0.05

—0.005

—0.04 0.05

FIG. 1. Surface of section for the ALS. FIG. 2. Optimized surface of section for the ALS.

software tool has been developed. The tool creates the
map and the tangent map from the lattice elements and
their positions. It can produce a surface of section. Initial
conditions are typed in or selected with a mouse pointer.
For each orbit the tune and continued fraction expansion
of the tune is printed out. Fixed points of arbitrary or-
der are found by Newton's method, with initial guesses
selected by the mouse on the surface of section. The user
selects residuals based on the fixed points found. The
code calculates the optimizing step satisfying Eq. (11),
then recomputes the location and attributes of the new
fixed points corresponding to the new parameters.

As an example, this technique was applied to the
Advanced Light Source (ALS) [11]. The ALS ring has
twelve equivalent superperiods, each of which contains
three dipole bending magnets, six quadrupoles for focus-
ing, and four sextupoles for chromaticity control. The
superperiod has front to back symmetry. Thus, the pa-
rameters for the elements of only half of the superperiod
are needed.

The superperiod map and tangent map are constructed
by composing the half superperiod map with itself re-
versed. The maps for the linear elements (drifts, bends,
and quadrupoles) were obtained by exact integration.
The maps for the nonlinear elements were obtained by
sandwiching a thin lens between two drifts of length equal
to half of that of the magnet. This is equivalent to lowest-
order symplectic integration through a thick lens (cf. [12],
Eqs. 5.43 and 5.44). Lattice parameters were provided
by Forest [8]. We verified our code by showing that it cor-
rectly calculates the central tune, v, = 0.18975467. . .,
and chromaticity of the ALS. Figure 1 shows the surface
of section for the original lattice. There is a 2/ll island
chain, and a 1/6 chain in a chaotic region.

Into half a superperiod of the ALS lattice we inserted
four octupoles and two decupoles. This choice was arbi-
trary, and, depending on the specific situation, diferent

TABLE I. Parameters of nonlinear elements.

TYpe
Octupole
Octupole
Decupole
Octupole
Decupole
Octupole

Position (m)
4.550
5.752
5.902
5.952
6.767
7.397

Kick
-295.04
-247.59
-376.03
1082.80
-955.27
-900.10

Field (T)
-0.92
-0.77
-0.06
3.38
-0.15
-2.81

types and numbers of nonlinear elements could be used
equally well. We then reduced the residues of the 2/11
island chains keeping the central tune and chromaticity
fixed. As the 2/11 island residues decreased, the chain
disappeared and the 1/6 chain was drawn into the cen-
ter. Invariant circles formed outside of the chain, and the
region became much less chaotic. The dynamic aperture
was increased by moving the 1/6 island chain away from
the center by using as a residual the difference between
the position of one of the fixed points and its desired
position. The residue and the island chromaticity were
reduced simultaneously. In our code, island chromatic-
ity (() was defined to be the variation, (R = dR/db, of
the residue with respect to the normalized longitudinal
momentum 6. This definition avoids the divergence that
occurs when the fixed-point tune goes to zero, and it is
sensible for both elliptic and hyperbolic fixed points.

The optimized surface of section is shown in Fig. 2.
The island chains have been eliminated, and the phase
space chromaticity has been zeroed as much as possible,
so that the entire phase space, as opposed to just the
central tune, is invariant to small changes in momentum.
The thin lens kick strengths and locations of the inserted
nonlinear elements are given in Table I with length unit
of meters and momentum unit such that the design lon-
gitudinal momentum po is unity.

To see what these numbers mean physically, we note
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that the magnetic rigidity poc/e of the ALS is 5 Tm. For
a thin lens, the kick coefBcient is K = bL/am, where b is
the strength of the magnetic Beld at the pole face, L is
the length of the pole face, a is the half aperture, and m
is 2 for sextupoles, 3 for octupoles, and 4 for decupoles.
For a pole-face half aperture of 0.05 m and a pole face
length of 0.2 m the fields are given in Table I. These
fields are seen to be of reasonable magnitude.

This work shows that integrable nonlinear lattices can
be obtained, at least within the limitation of an analysis
that keeps only 1 transverse degree of freedom. As such,
this method should apply to electron machines, in which
the beams are flat and the vertical oscillations are nearly
uncoupled to the horizontal. These methods may also be
of use to machines with round beams, as the detrimental
chaotic efFects of the coupled system should be smaller
when the uncoupled system is made integrable. We are
currently developing methods to test this hypothesis.
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