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A control scheme is devised for taming the dynamics of convectively unstable extended systems exhib-
iting chaotic behavior. We show how complex spatiotemporal phenomena can be eliminated in arrays of
coupled chaotic elements, in favor of a coherent state in which all elements are synchronized to a
prescribed periodic orbit of the uncoupled system. The propagation of the synchronizing front and the
resulting steady state properties of the array are analyzed in the presence of noise.

PACS numbers: 05.45.+b

Spatially extended nonlinear systems often display

complex time evolutions whose description cannot be cap-
tured by a low-dimensional dynamical model. In many

applications, it is advantageous to avoid phenomena such

as spatiotemporal chaos and turbulence, yet to operate
the system at external conditions for which these are the
natural states. In open flow systems, noise is often of
paramount importance in the development of nonlinear

waves, through the presence of a convective instability.

There, a single local disturbance is amplified as it is con-

vected through the spatial extent until eventually it flows

out of the system; no permanent structure is produced.
However, a persistent noise can have a devastating eff'ect

on the eventual dynamics through the appearance of sus-

tained complex wave patterns downstream [1,2]. These
noise sustained-structures have been characterized by

eff'ectively one-dimensional models in a variety of convec-

tively unstable systems, such as viscous films flowing

down an incline [3], Taylor-Couette flow with an imposed

axial flow [4], and channel flow in the presence of a

periodic array of stationary obstacles [5]. Convective in-

stabilities can also arise in discrete spatial arrays of non-

linear oscillators or neurons. Ideally, one is interested in

taming the dynamics to behave coherently, by applying

only small changes to one or several accessible parame-

ters. In this Letter, it is shown for the first time how a

convectively unstable chaotic state can be controlled in

the presence of noise to evolve periodically in time, uni-

formly along its spatial extent. The strategy is based on

the application of controllers, dispersed periodically in

space, with each one perturbing the value of a local pa-

rameter, using measurements made only in its neighbor-

hood. Experimentally, the controller actions can be in-

visioned as external pressure changes applied at locations

along the boundary of a continuous Aow, or as a small

external driving force applied to a small number of the

oscillators distributed in a spatial array.
A prototypical system in which a convective instability

may lead to intermittent spatiotemporal dynamics can be

constructed by forming a one-dimensional array of cou-

pled elements, each of which is described by an identical,
low-dimensional chaotic model [6]. The elements in-

teract with their nearest neighbors asymmetrically, mod-

eling a preferred direction of propagation, or a mean Aow.

In the control scheme introduced here, we show how any

orbit of the typically dense set of unstable periodic orbits
underlying the low-dimensional chaotic attractor of a sin
gle, uncoupled element can be synchronized throughout
the entire array. In the absence of coupling between the
elements, such an orbit can be stabilized for a single un

coupled element through a recently introduced control
procedure for low-dimensional systems [7]. However, it
is unfeasible to apply this procedure to large coupled ar-
rays, where the global dynamics does not settle onto a
low-dimensional invariant set. In fact, the eventual dy-
namics often occurs on a set whose dimension is of the or-
der of the number of interacting elements.

For convenience, consider discrete time systems, which
are often modeled as coupled map lattices [8]. In a linear
array of one-dimensional maps, the scalar state x/(n+ I )
(site j, time n+1) is determined according to the evolu-
tion equations

xI (n+ I ) = (1 —
y~

—y2)f(xj (n ) )

+ y)f(xj-((n))+ yzf(x)+)(n))

for j=2, . . . , N —1, where the nearest neighbor coupling
constants obey y~) y2~ 0. The nonlinear mapping is

taken to be the quadratic map f(x) 1
—ax, with the

parameter a chosen well within the chaotic regime. The
type of boundary conditions (periodic or open) strongly
influences the eventual motion that will be observed [1,91.
For open boundary conditions, say

x ~
(n+ 1) (1 —y2)f(x ~ (n) ) + yzf (xq(n) )

and

xN(n+ I) -(1 —y))f(xjv(n))+ y(f(xtv )(n)),
a range of the couplings y& and y2 exists, for which the
system exhibits a stable coherent chaotic state (this is the
subject of Ref. [9]). Arbitrarily weak noise destroys the
coherent state, due to the fact that it is convectively un-

stable; i.e., the system is linearly unstable in a reference
frame moving with nonzero speed v towards higher num-

bered sites (we call this direction "downstream" ). In the

presence of noise, only a finite number of elements near
the "upstream" edge are synchronized, evolving chaoti-
cally, while the remaining elements display complex in-

coherent time evolutions [see Fig. 1(a)]. If the boundary
conditions are chosen to be periodic rather than open, the
synchronized chaotic state becomes absolutely unstable
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chaotic regime, the eventual motion in the presence of the
control will be uniform in space and periodic in time.
Consider the synchronization of an unstable period one

orbit x*, underlying the chaotic attractor at a=a*.
Without control, each element of the chain will behave

chaotically. Suppose that site 1 takes on a value close to
x* at some time m; this is guaranteed to happen due to
the ergodicity of the motion on a chaotic attractor. As-

suming that the chaotic state has a coherence length of at
least three sites (which holds for a wide range of parame-
ters [9]), we expect x2(m) and x3(m) to take on values

close to x as well. Applying a small parameter change
a =a*+bai(m) at site I and at time m leads to the fol-

lowing linearized form for the evolution of site 2:

bx2(m+1) =f'(x ) [yQI$X2(m)+ yi Bx 1 (m)+ y28x3(m)l

0.0— +A ylba l (m), (2)
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FIG. 1. Sixteen consecutive time steps in the eventual dy-
namics of an array with y| 0.75, y2 0.05, and a 1.6, at
noise level cr 10 ', are overlayed. The eventual dynamics
without control (a) and with the control (b) of Eq. (3) applied
at site I (ba,„0.1) are shown. All the site values at a given

time are joined by solid lines, and were obtained from random
initial conditions after 0(103) iterations of the array. The con-
trolled array (b) exhibits regions of periods 1, 2, and 4.

[9], due to the reinjection of the amplified noise at the
downstream boundary back into the system. In the dis-
cussion below, only arrays with open boundary conditions
are considered.

It is important to remark that even though each indivi-
dual element is operated at conditions well within the

where yQ
—=I —

yl
—

y2, bxJ(m)= XJ(m—) —x, the deriva-

tive of f is taken at a a and A = Bf/Ba at x x and

a a . Choosing ha|(m), the weak perturbation applied
at time m, in such a way as to force element 2 to fall on
the unstable fixed point at time m+1, yields the feedback
law

ba i(m) = — [yobx2(m)+ yibxi(m)+ y2bx3(m)] .
f'(x')

Ayi
(3)

In cases where the dynamics of the individual elements
cannot be described by a one-dimensional map, a feed-
back law which forces element 2 onto the local stable
manifold of the unstable orbit must be formulated
[10,11].

Will applying the above perturbations to site 1 from
time m onwards force all the other e)ements to eventually
synchronize? To answer this question, we perform a
linear stability analysis of the uniform solution XJ=x*
for all N sites, in the presence of the control law. Linear-
izing Eq. (1) around the uniform state at a =a and us-

ing Eq. (3), we obtain

bx I (n + I ) -f'(x')/yl [[yj y2 yQ(1 y2)]bx2(n) —(I —y2) y2bx3(n)[

bx2(n+1) =0,

b'xn(n+ I ) =f'(x*)[(1 —
yl )bxlv(n)+ yl &xn- i(n)],

bxJ(n+1) =f'(x ) [yQBxJ(n)+ yil5xJ —l (n)+ y2bxJ+1 (n)],

If'( *)I«I —
y

—y2)+2 Jy y2] (1. (5)

We expect that, in the absence of noise, a control signal
applied at the upstream edge of a system obeying Eq. (5)
will form a synchronizing front that is convected through

for j=3, . . . , N —1. This system possesses a doubly de-
generate eigenvalue at zero with the other A —2 eigen-

values given by Xs =f'(x*)[yQ+2 jyly2cose~] for q
=I, . . . , N —2, where 8 =lrq/(N —1). Thus, the uni-

form state is linearly stable provided

the entire array. The introduction of even weak noise can
destroy the synchronizing front in the presence of a con-
vective instability. Such an instability is characterized by
the existence of a frame moving with speed v, with
respect to which the uniform state is linearly unstable; in

other words, an initial disturbance bx;(0) is amplified as
it is convected downstream according to the scaling regu-
lation bx;i„„(n)-bx;(0)e""', with A(v) positive [12].
In Figs. 1(a) and l(b), sixteen consecutive time steps in

the eventual dynamics of an array at parameter values
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y~ 0.75, y2 0.05, and a* 1.6 are shorn. In order to
make the effect of noise apparent, a random number uni-

formly distributed on [—o, cr] with o =10 ' was added
to each site value at every time step of the evolution. In

the absence of control [Fig. 1(a)), the first approximately
thirty sites evolve chaotically, yet coherently, while sites
further downstream are incoherent [9]. Some of the
chaotic behavior is eliminated in Fig. 1(b) by applying
feedback perturbations at site 1 according to Eq. (3), as
long as their magnitudes are less than a prescribed
8'a~,„0.1; otherwise the parameter is reset to its nomi-

nal value a until the chaotic trajectory returns to the
neighborhood of x . Once the perturbations at site 1 sta-
bilize element 2 onto x, a synchronizing front propa-
gates downstream. Notice that the synchronizing front
which stabilizes the unstable fixed point at x =0.5376 is

destroyed downstream in favor of period 2 trajectories.
Typically a region of several "spatial period doubling"
[11]bifurcations appears, beyond which the dynamics of
the elements becomes asynchronous and complex.

We now show how the "spatial bifurcations" in Fig.
1 (b) can be eliminated in favor of the synchronized state,
through the deployment of additional controllers which

reinforce the synchronization front further along the
chain. At a site located a distance ( from site 1 (this dis-

tance is calculated below), a perturbation of the form

specified in Eq. (3) is applied, where the site indices are
translated by ( elements. As before, these perturbations
are applied only as long as they are smaller than the
prescribed bam, „. This procedure is reiterated for addi-

tional sites, each located g elements from the previous
control site, until the boundary of the array is reached.
In Fig. 2, the advance of the synchronizing front in a 200
site array with g 14 is shown for every 1000 iterates,
starting from random initial conditions. All parameters
of the array and controllers are identical to those used in

Fig. 1. The synchronizing front moves monotonically to
the right with a speed that evolves in a periodic fashion;

v -v—

2001500 50 100
2

FIG. 2. Evolution of the synchronizing front in the system of
Fig. l, with controllers space every l4 sites (tick marks at the

top of the figure indicate their positions) with ba O. l and
a lo 'o. The state of the array is shorn every 1000 iterates
(site values are joined by solid lines), starting from random ini-

tial conditions.

each time the front reaches a ne~ control site, it hovers
around for a long time relative to the time it takes it to
advance between control sites.

How is the distance ( between control sites deter-
mined? To answer this question, consider the effect of
adding a b-correlated random variable distributed on

[—cr, cr] to the right hand sides of the noise-free dynam-
ics of Eq. (1). An initial disturbance of strength cr intro-
duced at site 1 of a uniformly synchronized state will

grow to have magnitude ere
"t')'I' at site I at time I/v

later. Assuming noise is continuously injected into the
system, the maximal disturbance felt at site I is that cor-
responding to a convective instability moving ~ith a speed
v=v* for which A(v)/v is maximal, so that v is the
solution of the equation d/dv[A(v)] A(v)/v. Taking the
uniform state as an initial condition, it can be seen that a
control of the form of Eq. (3), applied at site I at times
proceeding I/v, will manage to reduce the disturbance
down to 0(a), provided ba,„&Cae'"(' )~', where C is

a constant which depends on the gain coefficients of the
control law in Eq. (3). Thus, the maximal distance ( be-
tween controllers which renders the control procedure
eA'ective is

ln(ba, JCcr),1

A v
(6)

where A'(v) denotes the derivative of A(v).
The above scaling relation was verified for umdirec-

tional coupling (y2 0) by determining ( numerically for
several noise levels and perturbation strengths at fixed
values of yi and a . The deviations from the scaling of
Eq. (6) occur only when nonlinear effect become
significant, i.e., when ba~, „&&o' . Each determination
of g involved implementing control procedures with in-

creasing values for the intercontroller spacing I (was.
determined as the largest spacing I for which it was possi-
ble to control a system consisting of N kl sites, where

we chose k 10. For I ) g, the synchronizing front may
never make it over to the Nth site; even if it does happen
to move through the entire system, the front quickly re-

cedes upstream and typically fluctuates wildly back and

forth without attaining a steady state. Although the
values of g were calculated numerically for finite k, we

believe that they represent values in the thermodynamic
limit (k ~). Indeed, no deterioration in the steady
state is observed near control sites which are further
downstream. %e note that in the calculations the
speci@ed value of 8'a~,„~as used for all control sites ex-
cept the one at site 1, for which a larger value of
ba,„0.1 was used. In this way, the problem of waiting

an insurmountable amount of time for the control to be
initiated is overcome. Although realistic noise levels are
orders of magnitude larger than those exaniined in the
model (cr & 10 ), large intercontroller spacings will be
effective in experiments, provided the quantity A (v } is

not too large. Notice from Eq. (6) that the dependence
of ( on this quantity is linear as opposed to the logarith-
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mic dependence on noise.
Synchronizing arrays with controllers separated by the

distance g of Eq. (6) can be more complicated in cases of
bidirectional coupling (yz&0). For such arrays, a front
propagates in the upstream direction, in addition to the
synchronizing front which moves downstream. Unlike
the downstream Aow, disturbances decay as they propa-
gate upstream. Thus, even though an unsynchronized
element forms a disturbance which decays upstream, it

may still have a disabling effect on the reinforcement
upstream. In other words, although the synchronized
state is linearly stable for all moving frames at separation

g between controllers, it is not necessarily a global attrac-
tor. The method we use to enter the small basin of at-
traction is to initially employ additional controllers
separated by a smaller distance, say g/2, in order to syn-

chronize the array. Then, perturbations at every second
control site are turned off (see [11] for details). Using
this technique, the scaling relation of Eq. (6) has also
been verified numerically for arrays with y2&0.

The synchronized steady state obtained using intercon-
troller spacing g can be deduced from Eq. (6) to be
enclosed in an envelope g(y), given by Ing(y) ]ncr
+A'(v )(ymodg), where y is the coordinate along the
array. The value of t can be calculated from the spec-
trum A(t ) of spatial instabilities of the linearized system

(I ). For unidirectional coupling (y2 0), a disturbance
bxz(0) grows as it propagates down the chain with speed
v according to

A(v) ]nif'(x )) —(I —v)ln
1
—

y)

(see Refs. [2,12]), leading to v 1
—if'(x )i(I —yt).

The numerically obtained steady state for a system with

yt 0.65, y2 0, a 1.6, and a 10 is shown in Fig.
3 as circles. Close agreement is found with the steady
state envelope g(y) (plotted as a solid line), which was

obtained using ( 13 and the expression for v

We now discuss the relevance of our control to experi-
mental systems, in which making many simultaneous
measurements is often unachievable. The great advan-

tage of the control method presented in this paper is that
it is inherently local in nature, involving only three mea-
surements in a spatial neighborhood of the site at which a
perturbation is applied. The number of required mea-
surements may be reduced even further by utilizing
knowledge of the shape of the envelope g(y), in order to
deduce the value at a particular site from that at an adja-
cent site. Another way in which the number of measure-
ments can be reduced is to replace the local linear
dynamical model of Eq. (4) by one which depends only
on a single scalar variable and the history of the applied
parameter perturbations as was introduced in Ref. [10].

To summarize, we have shown how a convectively un-

stable spatially extended system consisting of locally cou-
pled chaotic elements can be controlled to behave periodi-
cally by the application of small feedback perturbations
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FIG. 3. Log plot of the steady state shape of the synchron-
ized array (circles) determined numerically for a system with

yt 0.65, y2 0, a 1.6, g 13, cs 10, and ba,„O.OI.
The front is compared with the steady state envelope g(y)
(solid line).
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to an external parameter at several spatial locations. Al-

though the above discussion was limited to synchronizing
a fixed point, the method is easily extended to stabilizing
higher periodic orbits. Associated with each element of a
period k orbit is a synchronizing front, formed by the
consecutive application of k diferent control laws of the

type in Eq. (3). Because of the relative ease with which

the control scheme presented here can be implemented,
we anticipate experimental applications to be forthcom-

ing.
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