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We consider the growth of films by molecular beam epitaxy in the presence of step-edge (Schwoebel)
barriers using numerical simulation and experiments. We show that the growth of a singular surface is
unstable, but that a miscut above a certain critical slope (which depends on growth conditions) leads to
stable growth in a step-flow mode. For singular surfaces the instability gives rise to the formation of
large mounded structures on the surface for which the slope is in the stable regime. We identify these in
GaAs epitaxy using atomic force and scanning tunneling microscopy. We propose a continuum equation
which exhibits these features.

PACS numbers: 68.35.Ja, 68.35.Bs, 68.45.Da, 68.55.Bd

The technique of molecular beam epitaxy (MBE) is

among the most refined methods for the growth of thin
solid films and is of great importance for applied studies.
The purpose of this paper is to investigate one of the cen-
tral problems in this area: W'e study the conditions for a
film grown by M BE to be stable in the presence of inevit-
able thermal fluctuations and shot noise in the growth.
We will show by experiment and by simulation that in the
most common physical situation a singular surface (i.e., a
low index crystal face) is unstable, but that a vicinal sur-
face with a miscut above a certain value is stable except
for very small statistical roughening, and that the two
cases are distinguished by a critical slope which depends
on the growth conditions. In the unstable case the sur-
face develops large scale mounds which we identify ex-
perimentally: These are hills on the surface whose sides
spontaneously develop and are steeper than the critical
slope. Further, we suggest a continuum equation ap-
propriate to this class of growth.

This subject has a long history which separates into
two streams of theoretical development. The most basic
model is the step-flow picture of growth of Burton, Ca-
brera, and Frank [1]. In this essentially deterministic
picture, if we neglect nucleation, a train of steps proceeds
uniformly across the surface when atoms from the incom-
ing beam land on adjacent terraces and diffuse to be
trapped at the step edges. The rate of advance of the
steps is the rate of attachment to the step edge. Another,
more recent, set of ideas arose from statistical studies [2]
which consider the roughening due to fluctuations in the
flux, and are, in the generic case, implicitly concerned
with films which are either porous or allow partial stick-
ing. In this picture the film inevitably eventually
roughens and its roughness w (i.e., the rms width of the
interface) grows as a power law in time, w-t~, with

P ( l. In fact, M BE films at high temperatures appear to
show very little roughening [3-8] and very small P and,
in the best characterized cases, grow by stable step flow.

In a seminal paper, Villain [9] pointed out why the
generic case of statistical roughening cannot apply to the
early stages of M BE. In M BE there is a conserved
current on the surface; this is not true in the generic

theory. Physically this results from nearly total sticking
of the incoming flux, the near absence of desorption, and
the lack of overhangs or vacancies. Unfortunately, the
simplest theories with the conservation law built in

[10-12],wherein surface diffusion is driven by the curva-
ture of the surface, are not applicable to MBE growth ei-
ther: They eventually give rise to grooved surfaces
[13,14] with P= 1.

The way out of this quandary was also provided by Vil-
lain [9] by appealing to another physical effect. He
pointed out that if the barrier to hopping of a particle at
the edge of a step was different from that on a terrace,
then the situation would change because this asymmetry
could also drive surface diffusion. The usual assumption
is that it is harder to step down from an upper terrace
than to remain on the same level (even though a down-
ward step results in being bound at a step edge): This is
the case of a Schwoebel barrier [15]. In this case, Villain
gave simple arguments indicating that step flow would be
stable on a miscut, vicinal surface, in the sense that fluc-
tuations in the spacing of a step train are damped, and
unstable on a singular one, the difference being provided
by the nucleation of new islands in the latter case. How-
ever, he did not explicitly treat the eventual fate of a
singular surface. In this paper we will amplify and ex-
plicitly verify Villain s picture by simulation and experi-
ment and we will provide the answer to both questions.
In particular, for the unstable case, we introduce the idea
of mounds which are related to the "sawtooth" structure
of Villain. :-'Villain's picture has also been recently theo-
retically justified by Zangwill ei al. [16], who emphasize
the importance of asymmetry at step edges in avoiding
the pathologies of previous work. If the Schwoebel bar-
rier happens to be very small, a transient regime corre-
sponding to the theories of [10-12]might be observable.

In order to investigate these questions we have per-
formed numerical simulations which allow us to study the
effect of parameters such as miscut angle and Schwoebel
barrier which would be difficult to vary experimentally.
Our Monte Carlo activated hopping model is based on
Refs. [17,18] which included interactions between nearest
neighbors; we also include next-nearest neighbor interac-
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FIG. 1. Surfaces generated by a Monte Carlo activated hop-
ping model with Schwoebel barriers after 50 layers of deposi-
tion. (a) Singular surface showing large mounds: S, 0.40 and
cr 16. (b) Vicinal surface with a slope of 0.1. Terraces were
observed to fluctuate but remained stable: S, 0.40 and cx 8.

tions to provide a convenient means of incorporating the
Schwoebel barrier [19]. In the model atoms are deposit-
ed randomly on the surface, and surface atoms are al-
lowed to move by hopping over barriers of size E, with

hopping rate —e where T is the temperature and k
is Boltzmann's constant. There are two parts to the bar-
rier: One is determined by simply counting the number
of nearest neighbor bonds n„in the current position, the
other depends on the number of next-nearest neighbors in

both the starting and final locations for a given hop at-
tempt. If there are more next-nearest neighbors in the
final location then the additional barrier is 0, otherwise it
is the difference in the number of next-nearest neighbors
n, multiplied by an energy parameter, E,. The total bar-
rier is given by E n„E„+n, E,. The additional barrier
changes S„aconvenient measure of the Schwoebel
effect. We have S, =l —r where r is the ratio of the
probability to approach a step versus the probability to—n~E~/k T
move away from a step, r =e ' ' . For an adatom ap-
proaching a straight step, n, 1. The algorithm was test-
ed for equilibrium behavior and found to obey detailed
balance. Periodic boundary conditions were imposed and
simulations were typically run with two dimensional sub-
strate lattices having 40000 sites.

To explicitly investigate stability of the interface we
examined the morphology of the simulated surface during
growth. Simulations were performed on both vicinal and
singular surfaces using realistic values of the model's pa-
rameters for GaAs growth. For singular surfaces we
found that stable layer-by-layer growth did not occur.
Rather we found the formation of large mounds for a
wide range of conditions; see Fig. 1(a). After the mounds
have formed, they increase in both height and lateral size
keeping the cross-sectional angle, the angle sloping sides
make with the terraces, approximately constant. Further
growth causes the mounds to slowly coalesce until only
one on the order of the size of the system remains at
which point finite size effects cause the surface to satu-
rate. In order to obtain mounds which are smaller than

the system size, the cross-sectional angle (typically
15'-25') must be relatively large. However, this angle
appears to be a function of S, and we are able to reduce
it though we have not been able to simulate a large
enough system with a sufficient number of layers to ob-
tain mounds with a cross-sectional angle of 1, as is typi-
cal for GaAs MBE; see below. It should be noted that to
compare the simulations with GaAs MBE, each lattice
position in the simulation should be considered a (2 X 4)
unit cell which would reduce angles measured in the
simulation by a factor of -3-5.

We should point out that these structures seem quite
different from large instabilities seen in earlier theoretical
work [14,20] where the slope of the structure quickly in-

creases without bound. In our case, the slope is constant
or possibly slowly increasing in time, and for our parame-
ters remains rather small.

On vicinal surfaces the formation of instabilities de-
pends on the growth conditions. The result of many
simulations is that where there is sufficient nucleation of
islands on terraces, mounds are present. Step flow

growth occurs when the adatoms reach a step edge before
nucleating, and thus cannot form mounds; see Fig. 1(b).
The crucial parameter for the formation of mounds seems
to be the ratio of the average separation of two dimen-
sional islands during the first layer of growth, ~ (mea-
sured on a singular surface) to the size of the terraces I;
mounds form for o ( I, i.e., when the slope of the surface
is small enough. We measure a for each set of growth
conditions. Its value depends upon growth rate, tempera-
ture, and to a lesser extent the size of the Schwoebel bar-
rier S,.

The conclusion that a generic singular MBE surface
would be unstable led us to look for the instability experi-
mentally. The experimental studies consisted of scanning
tunneling microscopy (STM) and AFM investigations of
MBE grown GaAs films on GaAs(001) substrates. A

variety of substrate misorientations, overlayer thick-
nesses, and growth temperatures were used. The central
experimental observation in this work is that we do find

large mounds on the surface of films grown on Oat sur-
faces whereas films grown on vicinal surfaces are relative-
ly smooth. The STM studies were carried out in situ and
the AFM studies were performed after removal of the
sample and exposure to air. Investigation of the surface
features by STM was problematic due to their large
scale. Typically a 1 pm square STM scan region of the
surface was atomically smooth, however, other regions
which exhibited step bunching could also be observed
[21]. Only when transferred to the AFM could large
enough areas of the sample be imaged to discern the na-
ture of the large scale morphology. Figure 2(a) shows an
AFM image of a 500 bilayer thick film grown at 555 C
on a substrate with a miscut of approximately 0.1 . The
elongated mounds are 8 nm high and 0.5 pmx1. 5 pm in

planar dimension. The anisotropy is along the (110)
direction. In contrast, Fig. 2(b) shows an AFM image of
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FIG. 2. (a) AFM image of nominally singular GaAs(OO1)
surface after deposition of 500 bilayers on an oxygen desorbed
substrate. (b) AFM image of 2.0' miscut GaAs(OOI) after
deposition of 2000 bilayers on a 300 bilayer buA'er layer. The
gray scale contrast of (b) was adjusted to be comparable to that
of (a).
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a 500 bilayer film grown at 600'C on a substrate with a
miscut of approximately 2'. The vertical gray scale con-
trast in the two images is identical. It is clear that the vi-

cinal sample is much smoother than the singular one.
When a difl'erent region of the vicinal sample, one with a
much lower temperature during growth, is scanned the
mounds are again observed [221.

The observation of large scale structure on the surface
of MBE films grown on nominally singular surfaces is

quite striking and unexpected. It is difficult to study this
structure using other more common surface analysis tech-
niques, such as reflection high energy electron diffraction
(RHEED) or scanning electron microscopy. Recent re-
sults obtained using light scattering during growth seem
to show the same behavior [231. We find that the
mounds occur when samples are grown in a layer-by-
layer mode and they are absent if the growth occurs by
uniform step flow. As deposition proceeds the mounds

grow both in height and width such that the slope which
the inclined sides make with flat terraces remains approx-
imately constant. The angle of inclination is typically be-
tween 1' and 2' for samples grown at a substrate tem-
perature of 555'C. As the growth temperature is in-

creased and step flow begins to occur the angle of inclina-
tion decreases. This progression continues until for
sufficiently high growth temperatures on vicinal surfaces
the mounds vanish.

In order to get a quantitative understanding of our re-
sults, we returned to the simulations, and monitored the
surface mass current j per unit width of sample during
the initial stages of deposition as a function of substrate
slope; see Fig. 3(a). This measurement was suggested by
Krug, Plischke, and Siegert [24] as a convenient way to
measure the coefficient Dq of the Laplacian term in the
Langevin equation:

Bh/Bt = —V. j+ t)(x, t) =Dz& h+ rt(x, t) . (1)
We have

D2 —&j/&ttt, (2)
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FIG. 3. (a) A plot of current j vs slope m for difl'erent values
of the nucleation distance o and Schwoebel barrier S,. The
current was measured on a substrate with a well defined slope
for the first 0. 1 monolayer of growth and was averaged over 10
realizations. Time is measured in monolayers so that the Aux is

constant (independent of growth rate). (b) Data collapse of
five diA'erent data sets varying a and S,.

Here m is the slope. We observe that the surface will be
unstable for Dq (0; see Fig. 3(a). As expected, the large
m limit of the measured current has Bj/Bm (0 and we

have short terraces, little nucleation, and stable growth.
The small slope limit has t)j/t)m &0 where there is

significant nucleation and the growth is unstable. Also
we observed the peak of the curve occurs at m =I/ao,
where a is a constant of order unity as we suggested
above. Our general picture, using Fig. 3 as a guide, is

that if the local slope corresponds to Dq & 0 then instabil-

ity sets in, and the local slope increases until the peak of
the curve is passed, and an operating point is found in the
stable region.

To obtain a physical picture, consider the case where
there is a Schwoebel barrier that does not allow any
atoms to jump down a step and up steps are perfect sinks.
(This is a slightly altered version of Uillain's estimate).
In the case of small m only the atoms that land on a ter-
race within cr of the step edge will make it to the edge;
the rest will attach to islands on the terrace, and will not

contribute to the net mass current. In this case, the total
current should be given by the number of atoms which

land in strips of width cr near the advancing step multi-

plied by the number of such strips per unit length of sam-

ple, j=Fo m, where F is the incident flux/area. For
larger m we postulate a scaling form for the current in

terms of the dimensionless parameter y =om, namely,

j=Fcr~mf(v) .
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FIG. 4. Numerical solution of h —V j+g in two dimen-

sions where j D2Vh/[I +X4/Dt(Vh) ]+D4V(V h). In this in-

tegration D2/) 4 0.01, D4 10, and (rtrt) 5x10 5. The large
scale features are due to an instability for surfaces with a slope
less than a critical value given by m, -+D /2X4.

We note that for large slope m, a must drop out of the
problem, so that for large m, the scaling function f must

obey f- I/y, and j -F/m.
A data collapse is given in Fig. 3(b) using these ideas,

generalized for finite Schwoebel barriers (by simply mul-

tiplying j by S,). The measured current has the func-
tional form we assume, to a first approximation.

Finally, we ask what sort of continuum dynamics can
describe these surfaces. This question is particularly in-

teresting since several recent studies have appeared
[3,6,7] which have attempted to measure surface rough-
ness, without a clear resolution of the problem. Since
Schwoebel barriers are probably very common in the
films grown, it is possible that what is being measured is
the small-scale roughness superimposed on mounds. To
study this question, we generalize the results of the last
paragraphs, and take, as the simplest interpolation

j =FS,rJ Vh/[I+(acrm)2] Then . we form a Langevin
equation as above, t)h/t)t = —V j + rI(x, t) with this form
for j as a function of the local slope.

A numerical solution of this equation has been found,
and the results are shown in Fig. 4. There is general
resemblance to the experimental and simulation results.
We have not yet analyzed this equation in order to find

the roughening exponents, but we think that it is reason-
able to assume that if the surface stabilizes around a
selected slope, the roughness will be small, P=O. On a
larger scale, it is far from clear to us that any scaling or
well-defined exponents should be expected.

I n summary, we believe that we have given a
comprehensive picture of MBE growth in the case where
there are substantial step-edge barriers. We think that
the observation of mounds on the surface unifies the
picture in a very satisfying way. Thus we believe that
layer-by-layer growth leads to mound formation, and
growth on a sufficiently miscut surface to stable step flow
[22]. Our considerations apply in the long time regime
after RHEED oscillations have died out. We should note
that we seem to hzve observed that there may be a select-
ed slope in the stable region of Fig. 4, but in simulation,
experiment, and for our new continuum equation, we
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