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Proof of Page's Conjecture on the Average Entropy of a Subsystem
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Page conjectured very recently [Phys. Rev. Lett. 71, 1291 (1993)] that if a quantum system
of Hilbert space dimension mn is in a random pure state, the average entropy of a subsystem of
dimension m & n is given by S „=P&" &1

—™. We outline a proof of this elegant formula.

PACS numbers: 05.30.Ch, 02.90.+p, 03.65.—w, 05.90.+m

Very recently Page [1] considered the problem of getting entropy out of a system in a pure quantum state. He took
a quantum system AB of Hilbert dimension mn with normalized density matrix, and divided it into two coupled
subsystems, A and B, of dimension m and n, respectively, with rn & n

Suppose the system AB is in a pure state; then its entropy S~s = D. However, the entropy of the subsystems S~
and Ss are positive. Page and several other authors, as cited in his Letter, were interested in S „,the average of the
entropy S~ over all pure states of the total system. The pure states were assumed to have the unitarily invariant Haar
measure on the space of unit vectors [Q) in the rnn-dimensional Hilbert space of the total system. Page conjectured
an elegant formula for Sm, „based on its form for rn = 2, 3, 4, and 5. He also obtained an approximate formula valid
for large rn and n, starting from the equivalent of the following exact formula,

S,„=(S~) = —N(rn, n) ) p, lnp, P(pt, . . . , p ) dp, ,

where

m m m

P(p» "p ) dp =d(& —) p) [ (N -p, ) (pa dpi)
i=1 i=1 1&i&a&m A:=1

(2)

which differs from that of Page by the normalization factor

N(rn, n) =
4 h ~

i=1
(3)

We shall assume these formulas and proceed to prove the conjecture by evaluating the integrals exactly. Because
of limitation of space, the details [2] will be published elsewhere. To begin, the integrand is multiplied by a damping
factor exp( —P,. t etp, ) which serves two advantages: (1) the p, in the products Q may be replaced by D, = —~s

and (2) if the delta function is expressed as an integral, the order of integration can be interchanged such that the
integrations over p, are done first. We have consequently

N(m, n) = lim
c-+0 ~ ~ ~ ~

1&i&j&m

m m

(D D )2 Dn —m

1=1 L=1
(4)

where e&
= eg + iu, and the problem is transformed from one of evaluating multidimensional integrals to one of

evaluating partial differentiations, and just one integration. To save writing, we shall drop the prime in the rest of
the paper.

Similarly, the other factor on the right of Eq. (1) can be reexpressed as

) .p'»p P(pt p ) ~p'

where p is Euler's constant.

ckd= lim e'
~~0 ~ 27('

1&i&g(m
(D; —Ds) Dt ™)D( (p+ lnet)
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We consider first the evaluation of N(m, n). This is facilitated by noting [3]

~ h ~ h

1&i&y&m
(D; —DJ) =

1
D1

Dm —1
1

1
D2

Dm —1
2

Dm

The matrix will be denoted as D, i.e. , the determinant I'Dl, and hence

~ ~ 0 ~

1&i&j&m
(D' —D~)' = IDI' = IDIID I

= ID'D
I

~

Observe that in both Eq. (4) and Eq. (5) I'D'D
I

acts on a symmetric function f((e)) of e, (i = 1, . . . , m), and the
result is evaluated at e; = e. It turns out for such a case, the following simplification can be established [2]:

I'DD
I f((e,))I.. .= m! I'Dl D2Ds D f(fe, ))l, =,.

Set n —m + 1 = n. For the symmetric function in Eq. (4), we adopt the notation

Then, we have

m
DA m

~ h ~ ~ l
l=1

1
—,, = f~((s'))

m

ID'D
I fi((& ))I..=. = mllDI DF 'D2 "D +

k 1 k

=mt
m 1

1
(o, —1+ k) !ID

k=O k=1

Observe that

a+k —1
k~1 k

1
~m(a+m —1)

1
A+m —1

II,=.'( +k) rl",=,'( +k) " II,'==', ( +k)

The determinant can be evaluated to be Q» k. by a sequence of two operations where at the 1th step (1) take
the jth (j & l + 1) column and subtract from it the (j —1)th, and the resulting column replaces the jth column and
(2) factor the constant in front of every i & I + 1 row yielding the factorial (m —I)!.

Collecting the results above, we have

I&D
I fi(4~'))I„=,= mtN(~, m, ~), (12)

where

N(a, m, e) = 1
m —1(,i

k!(a —1+k)!.
k=O

(13)

With Eq. (12), the integral over u in Eq. (4) then yields a factor 1/I'(m(n + m —1)), and consequently the
normalization is given by

m

N(m, n) = (mn —1)! k!(n —k)!
k=1

We now proceed to evaluate the right-hand side (rhs) of Eq. (5). Let

(14)

m

f2((e;)) —= DI, ),D) (p+ Inc))
k=1 t=1 j=l

(15)
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and we shall first evaluate
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ID'D
I f2({~))l.= =m!IDI D 'D2" D + ') Di (w+»~i)

t=1 3—1 2

The in&i in Eq. (16) makes the calculation more complicated. For convenience, we record the following formula:

„f(p+1ne)
~a+1 (p + In e) (o. + i) —f„(a), (17)

where the first term in [ ] is the result of the numerator (p+ in&) never having been difFerentiated, whereas the
second term f„corresponds to it having been differentiated at least once, and it is given by

n, —1 ~k
f ( ) ~t ) LLC i( ) + ( 1)!

k!(n —k)

with fo = 0 and fi ——1. This helps in the evaluation of the following factor appearing in the rhs of Eq. (16):

Da —1DQ' Da+t-1 Da+m —2
1 2

m

(p+ !nei)
j=1

1 1 1= (n+ l —1) (n —1+k)i
k=0

[(pi'+ ln ei)]
e+t a+l

&+1

where p&
= p —Q&+& &i. Notice that the exponent of ci and ei+i are equal on the right of Eq. (19); therefore

when acted on by D the term proportional to pi' vanishes because the two columns, lth and (l + l)th, in the resulting
determinant are equal when (., are set to equal ~ This . is true for l ( m, but not for l = m,—there is no column to
the right of the mth, and this particular case will be considered following Eq. (21). By the same reasoning, the term
corresponding to that where the logarithmic term never having been differentiated [recall the remark following Eq.
(17)] also vanishes, and consequently the result of 'D acting on the factor within {) in Eq. (19) is the same as the rhs
of Eq. (11) except the lth column is replaced by (fo, fi,—. . . , f i)+, and the exponent of e is increased by 1 due to
the one extra differentiation Di. Upon evaluation of this nontrivial looking determinant, we obtain the contribution
corresponding to the lth term as

, l(o. + I —1) N(n, m, e)
m —l

Summing over the term from l = 1 to l = m —1, their contribution to I'D'D
I fs is, with n = n —m+ 1, given by

1 f m ( N(om~)
m! mn) ——

I
n+ —l(m —1)„;k ( 2) (21)

For the l = m term, we cannot leave out the terms containing p nor the logarithm, and its contribution is given

by

(p' +inc)

1
o. +m —2

n.=.'( + k) n'.:,( + k)

(22)
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multiplied by (a+ m —1) Pi, o (a —1+k)!ie ( + i&+i. The determinants above are evaluated to be

m —1. 1
m —1

k! and m ) ——(m —1)
k

(23)

respectively. Substituting a by n —m+ 1, the contribution due to the I, = m term is

.'1 N(a, rn, e)
mIn m p' +inc — m ——m —1m - k

A:=1

(24)

We have finally finished doing the differentiations, and adding Eq. (21) and expression (24) gives

I&& Ifs((e')) I.,=.= m' )|hi( I+
~ h 4 h QFAA+
A:=0

where q = mrtp' —
2 (m —1).

For the integration over io, we need the following formula:

dio,. In(e+t'io) e ' ().1

2s (e+ tio)" (n —1)! ( k

which can be established from the recurrence relation

(26)

(27)

with Ii = —p obtained by contour integration.
Finally, we obtain

(28)

which when multiplied by N(m, rt) Eq. (14) yields

(29)

Page's conjecture.
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