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A method is proposed for the experimental determination of the amplitude and phase structure of a

quasirnonochromatic wave field in a plane normal to its propagation direction. The wave field may rep-
resent either a scalar electromagnetic (EM) field or the quantum mechanical (QM) wave function of a
matter wave. For coherent EM fields or pure QM states, the method uniquely reconstructs the complex
wave fields. For partially coherent EM fields or mixed QM states, it reconstructs the two-point correla-
tion function or density matrix. The experiment uses only intensity measurements and refractive optics
(lenses), and the data analysis algorithm is noniterative and requires no deconvolution.

PACS numbers: 03.65.Bz, 42.50.Ar

The complete characterization of a fully coherent,
quasimonochromatic, classical electromagnetic (EM)
wave or a quantum-mechanical (QM) matter-wave field
requires the specification of its amplitude and phase as
functions of position, or equivalently its complex ampli-
tude Vr(r). Here ilt(r) refers to either the wave function
(in the case of a matter wave) or the electric field (in the
case of a scalar EM wave). In the case of partial coher-
ence, where an ensemble of similarly prepared systems is
under consideration, a useful characterization is provided
in the EM case by the two-point correlation function, also
called the mutual intensity, which is equal to

I (r, r') =(y(r) lit'(r')),

where the brackets indicate an ensemble average over the
set of realizations of the functions ilt(r). In the case of a
field obeying Gaussian statistics this function provides its
complete statistical characterization [1]. In the QM case,
the analogous quantity is the density matrix, also given

by Eq. (1) [2]. It provides a complete description for any
one-particle state (ignoring spin). The frequency label on
I (r, r') has been suppressed since we are considering
quasimonochromatic fields.

There has been a long-standing interest in the EM
problem of phase retrieval [3]. Earlier approaches relied
on interferometric techniques, and often an iterative com-
putational scheme to find a best fit, but not necessarily
unique, form of the field. Recently, for the case of a

coherent field, noniterative techniques were demonstrated
for determining the field [4,5]. These techniques also
make no recourse to interferometry, using instead dif-
fractive optics [5], or, more interestingly in our context,
only refractive optics [4]. Such methods provide a unique
determination of a coherent field, to within spatial band-
width limits imposed by the measurement scheme. The
case of a partially coherent field is not so simple, and no
general solution has been previously reported [4,6,7].

In the QM case, recent advances in matter-wave inter-
ferometry [8] have made it important to have methods
for experimentally determining the spatial coherence
properties of the matter waves, i.e., the density matrix,
especially in the case of particles described by a mixed
state (partially coherent matter wave) rather than a pure
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FIG. l. Wave field in the x3 0 plane propagates through
two cylindrical lenses, oriented along the xl,x2 directions, and is
detected in a plane at x3 D. Intensity data are collected for
many combinations of focal lengths f~,f2 and distances d&, dz.
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state.
In this Letter, a noniterative method, shown in Fig. 1,

is presented for experimental determination of the corre-
lation function and/or the density matrix I (r, r') of a

wave field with arbitrary state of coherence, either EM
or QM, from "intensity" measurements only, without re-

course to either interferometry or diffractive optics [9].
The method determines 1(r,r') in a two-dimensional

(2D) plane, which is not obscured from view by any
medium. This method uses only refractive optics (lenses)

and is limited only by spatial resolution. By "intensity" is
meant the quantity

l(r) =r(r, r) =((y(r) )'&,

which in the EM case is proportional to the ensembled-
averaged optical field intensity, and in the QM case is the
particle-position probability density.

The method relies on the transformation properties of
the Wigner function W(r, k) corresponding to the state
(EM or QM) of the wave field defined in the xi =0 plane
land using r =(xi,x2, xi)1 as [10]

W(xi, ki, xi, k2) =(I/z )J dxi J dx2exp( —i2kixi —i2k2x2)(lp(xi+xI xi+x2 0)'W (xi xl xi x2 0)1.

It is assumed that the wave travels nominally in the +x3
direction and that the transverse (xi,xq) structure of the
wave is smooth on the scale of many wavelengths; thus
the paraxial (small-angle) approximation is applicable
[1]. In the QM case, k i and k2 are interpreted as trans-
verse momenta (with 6 I), while in the EM case they
are transverse propagation constants proportional to spa-
tial frequencies. In both cases we scale x; and k; by a
common length xo so they are dimensionless. Note that
Eq. (3) provides a unique correspondence between
I (xi,x2,0,xi, x2,0) and W(xi, ki, x2, k2).

The proposed method uses a set of measured values of
intensity l(r) to reconstruct uniquely, by tomographic in-

version, the Wigner function W, and thus I in the xi =0
plane. In this regard the approach is similar in spirit to
that discussed by Nugent [6]. That approach was subse-
quently shown by Hazak [7] to be incomplete due to an
inability in the proposed scheme to cover enough of the
four-dimensional (4D) phase space in which W is defined
to allow reconstruction. The present discussion shows
how to overcome that limitation by using lenses. First the
necessary measurements will be described, followed by
the data analysis technique.

Consider the wave traveling in the xi direction and be-
ing normally incident on a pair of thin, cylindrical lenses.
One lens, located at xi di has focal length fi in the xi

X ]X ~ X2X2K(r, xi, x2) Cexp[ih(xi, p)x]exp ik3 +
L2

and the curvature radii Ri and R2 are given by R;
R;0+d;, wher

1 1 1
(i =1,2),

R;p D —d; f;
and the eA'ective propagation lengths are given by

L; (D —d;)(I+I;/R;o) .

(4c)

(4d)

In Eq. (4b) C is a complex constant for a given lens

configuration and h(xi, x2) is a phase, whose precise
forms are unimportant here. It is convenient to assume
that y(x i,x2,0) has been multiplied by a constant (relat-
ed to the total IIux) to make it normalized according to

y(r) = dxi„dx2K(r,xi,x2)y(xi, x2,0),
where

(4a)

(xi)'
2R]

(x2) '
282 (4t )

J J iy(xi, x2,0)i dxidx2=1;

then it can be shown that this normalization is upheld for
all xi. Equation (4a) has been called a fractional Fourier
transform, since it interpolates between y(xi, xq, O) at
d; =D 0 and its (2D) Fourier transform at d; D/2
=fi =f2 [11,12].

Next we will consider how the %'igner function trans-
forms under the influence of the lenses, and show that it
corresponds to a rotation in phase space (as pointed out
for spherical lenses by Lohmann [12]). We then show

that this allows projection tomography to be carried out

direction, and the other lens located at x3=dq has focal
length f2 in the x2 direction. (All lengths are scaled by
xp. ) Experimentally it is only necessary to measure the
intensity distribution l(xi, x2,xi) in various planes locat-
ed at xi=D, where D) di, d2, for various combinations
of discrete values of focal lengths fi,f2 and/or distances
di, d2. Such a measurement is simple in the EM case and
is presently feasible also in the QM particle case, using
atom optics. By proper analysis of the intensity data, the
function 1 in the x3 0 plane can be reconstructed
uniquely, within spatial bandwidth limits, by a nonitera-
tive, linear transform of the data.

To see this, consider that within the paraxial approxi-
mation, the effect of the xi direction cylindrical lens at
x 3 d i is (ideally) to multiply the incident wave y(x i,
x2, di) by a transversely varying phase factor exp(ik3xi/
2fi), where ki is the scaled, dimensionless momentum
(or propagation constant) in the x3 direction, and is

presumed known. The x2-direction lens has a similar
effect. The combined effect of the lenses and propagation
is described by a Fresnel integral over the xi 0 plane,
gi~ing for the field at r =(xi,xi,xi D) [I]
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(6)W(x ~, k ~,X2, k 2)dk [e,Ps(x (g,x2, k2)

each distinguished by a different value of 8. It is under-
stood that in Eq. (6) the arguments of W are to be ex-
pressed in terms of the rotated variables. The basis of
projection tomography is that if one can measure the pro-
jected function Ps(x~@x2,k2) for a sufficient set of values
of 8 over, a ir interval, then Eq. (6) can be inverted to ob-
tain W(xl, k l, xz, k2) by using the inverse Radon trans-
form [14]. We have demonstrated experimentally such a

[13]. Consider the 4D phase space with (dimensionless)
coordinates x ~, k |,X2,k2 in which W(xl, k i,x2, k2) is

defined. Define new coordinates obtained by formally ro-

tating by angles 8 and P,

x ~~ =x
~ cos8+ k ~ sin8, k ~g

—x ~ sin8+ k ~ cos8,
(s)

x2ii =x2cosP+ k 2sinP, k3~ = —X2sinP+ k2cosP .

If projection integrals are carried out over the Wigner
function along lines parallel to the k |9 axis, for fixed

values of x ~&, one obtains the projected distributions

phase-space method for reconstructing the Wigner func-
tion for a quantum optical system having a single degree
of freedom [15], following an earlier theoretical proposal
[16]. A time-frequency domain reconstruction has also
been discussed [17].

In the present case there are 2 degrees of freedom, and
we need to perform another set of projections along lines
parallel to the k2p axis, which yield the distributions

Pep(x)e, x2p) =~ „W(xl,k |,X2,k2)dk lsdk2p. (7)

Thus, if we can collect enough joint distributions
Pep(x~e, X2p) for many combinations of 8,P values, we can
apply successive inversions to Eq. (7) (first in xz, k2 then
in xl, k~) toobtain W.

It now remains to prove that the Fresnel-integral trans-
formation Eq. (4) actually affects the double projection
integral of the Wigner function in Eq. (7). Simply insert
Eq. (3) into Eq. (7) and change integration variables—this yields for the projected distributions

Pep(xls, X2p) (~i//ihip(x]e, X2p)( ),
where the transformed wave field is

goo goo

leep(x ~~X2p) =„dxI ) dx2Kep(x18 x2p XI x2) y(x l, x2, 0) ~

where

Key(x)e, x2p, xI,X2) Cepexp[ig(x~e, x2ii)]exp[ i[xlex—I csc8 —
2 (xl) cot8][

&&exp[ —i [xzpx2cscP —
—,
' (x2) 'cotP]j,

(9a)

(9b)

w here Cs~ (4z ~sin8sinP() ' and g(x~e, x2~) is an

unimportant phase. Equation (8) is of the form of an in-

tensity, defined in Eq. (2). In fact, it is equal to the in-

tensity 1(xl,x2, D) of the field after the cylindrical lenses,
given by Eq. (4). This equivalence can be established by
rescaling the variables:

x~e= x~e(L~csc8/k3),

x 2p
—x2p(L 2 cscp/k 3),

and choosing the correspondences

k3/R ~
= —cot8, k3/R2 = —cotp.

(10)

With these definitions pep(x~e, x2~) in Eq. (9) is equal to
y(x~, x2, D) in Eq. (4) to within a phase factor which
is not important when considering only the intensity.
Thus varying R~ (R2) corresponds to rotation of the
x~, k ~ (x2, k2) coordinate system by angle 8 (A8). For to-
mographic inversion it is sufficient to vary 8 and P in /V

equal increments between zero and n rr/N. The n—umber
of different angles needed depends on the complexity of
the structure of the Wigner function. These rotations can
be accomplished independently by varying the focal
lengths f~,f2 and/or distances d~, d2 independently. This
independence of rotation of the xi,x2 dimensions, neces-
sary for tomographic inversion, was missing in the propo-

sal by Nugent [6].
In order to demonstrate that the data analysis scheme

is feasible, we have numerically simulated the reconstruc-
tion of a coherent wave field with the following form:

y(x i, x2,0) ~ exp[iax2]

x exp[ —(x i +x2) '8/4 —(x (
—x2) '/4b] .

(12)

This function is plotted in Fig. 2, which shows both the
amplitude and phase structure. From this function we

analytically determined the Wigner function using Eq.
(3), and thereby the projected distributions defined in Eq.
(7). In this case we used 21 values of each angle 8,P, and
32 values of each variable xly, x2p to simulate experimen-
tal histogram. We treated these distributions numerically
as if they were experimentally measured data files, and
reconstructed the Wigner function using the filtered
back-projection algorithm for the inverse Radon trans-
form [14]. Equation (7) had to be inverted 21&&32=672
times, and then Eq. (6) had to be inverted (32) =1024
times, once for each combination of x2, k2. From the
reconstructed 4D Wigner function we obtained the corre-
lation function I (xl,x2,0,XI,X2,0) by performing the 2D
inverse Fourier transform in Eq. (3) 1024 times. Finally,
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2.0-

X] QO-

niques, it solves the uniqueness and stability problems as-
sociated with other methods. The method might be espe-
cially useful in atom optics or photon-limited quantum
optics because it obviates the need for complicated and/or
lossy beam splitters and/or diffraction devices.

We wish to acknowledge useful discussions with J.
Cooper and Marek Kowarz. This research was supported

by the National Science Foundation, Grant No. PHY-
924779.
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FIG. 2. Equal-separation contour plots of wave field for
8 1.3, a —0.25. (a) Amplitude

~ ttt(xl, xz iO) ~; (b) phase
arg[itt(xl, xz iO)]. Solid curves are Eq. (12). Dashed curves are
reconstructed using phase-space tomography. In (a) the lowest
contour value is 3% of the amplitude's peak.

the wave field can be obtained by factorizing the correla-

tion function in Eq. (I) because only a single wave func-

tion contributes to the average for the case of a coherent

field. The reconstructed field is shown in Fig. 2, and is

seen to be in good agreement with the original theoretical

field. The present example is for a coherent field, for sim-

plicity, but we have shown above that the method works

also for partially coherent fields, where it returns the

correlation function.

In conclusion, phase-space tomography has been intro-

duced for the determination of the amplitude and phase

structure of wave fields with arbitrary states of coherence
(within resolution limits set by the number of angles and

bins). Because it uses only refraction, rather than in-

terference or diffractive optics, it represents a new class

of phase retrieval methods for 20 fields. And because it

requires no numerical iteration or deconvolution tech-
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