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Nonlocal Contour Dynamics Model for Chemical Front Motion
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Pattern formation exhibited by a two-dimensional reaction-diAusion system in the fast inhibitor limit
is considered from the point of view of interface motion. A dissipative nonlocal equation of motion for
the boundary between high and low concentrations of the slow species is derived heuristically. Under
these dynamics, a compact domain of high concentration may develop into a space-filling labyrinthine
structure in which nearby fronts repel. Similar patterns have been observed recently by Lee, McCor-
mick, Ouyang, and Swinney in a reacting chemical system.

PACS numbers: 82.20.Wt, 03.50.—z, 82.20.Mj, 87.10.+e

In the study of chemical systems with both reactions
and diffusion, one may discern two broad classes of spa-
tial patterns: extended and compact. Extended patterns
typically arise from supercritical symmetry-breaking bi-

furcations [I]. In the two-dimensional case, which we

consider here, they are often regular, periodic structures
such as arrays of stripes, disks, or hexagons [2]. Com-
pact patterns, or localized states, appear in systems with

subcritical bifurcations via a nucleation process [3], and

typically take the form of a single one of the repeating
units found in extended systems. Both classes of patterns
are often described in terms of a competition between two
chemical species: an autocatalytic "activator" and its
"inhibitor. "

Localized states can exhibit a fingering instability [4].
One can imagine that these fingers may grow and branch
until a complicated labyrinthine pattern fills the entire
plane. Such structures may actually be metastable states;
barriers to domain fission may prevent the pattern from

evolving into the ground state (presumably a regular ar-

ray of stripes) from an initial condition which is topologi-
cally different. Qualitatively similar kinds of pattern for-
mation appear in other systems [5].

Complicated, labyrinthine pattern evolution in a chem-
ical system has recently been observed by Lee, McCor-
mick, Ouyang, and Swinney [6] in an iodate-ferrocya-
nide-sulfite reaction (see Fig. I). The patterns are com-

posed of regions with one of two diA'erent chemical com-

positions. This system appears to be bistable; if it is

prepared with one of the two possible uniform composi-
tions, it will persist in that state. Nontrivial pattern for-
mation requires a nucleation site in an otherwise uniform

background. These experiments also indicate that in the
formation of patterns, nearby boundaries or fronts repel
each other. We wi11 use these results as a guide to the
general features one would like to see in a model system
[7].

It is natural to seek a representation of the dynamics of
these and similar patterns in terms of the interface be-
tween domains of diA'erent composition; in order to cap-
ture the properties of repulsion and nonintersection, such

a contour dynamics must be nonlocal, coupling segments
of the interface that are distant in arclength yet close in
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The nonlinear function F(u), with derivative F', embo-
dies the autocatalytic nature of the activator. It is typi-
cally a polynomial in u with a double well structure

h

—1

FIG. 1. Pattern formation in the chemical system of Lee,
McCormick, Ouyang, and Swinney [61. White and black re-

gions correspond, respectively, to low and high pH, made visible
with a pH indicator. Figure courtesy of Lee et al. [6I.

space. The purpose of this Letter is twofold: to give an
intuitive construction of a fully nonlocal curve dynamics
from a set of reaction-diffusion equations and to show

that it is useful for describing pattern formation. The
evolution equation is written in terms of the intrinsic
geometry of the curve, and is valid for pattern evolution
far beyond the linear instability of localized states. In

this simplified form, it is easier to identify the physics re-

sponsible for the destabilization of a compact pattern, the
tendency of a pattern to grow or shrink, and the interac-
tion between different portions of the interface. The
curve dynamics is studied numerically and is shown to
reproduce the qualitative features of the experimental

patterns.
The reaction-diffusion pair studied here is similar to

models of spiral wave formation [8] and nerve impulse

propagation [9]. With u the activator and v the inhibitor,
we consider
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whose minima, not necessarily of equal depth, we label

u+. Patterns like that in Fig. 1 can then form in which

regions of u=u+ (e.g. , white) are surrounded by a re-

gion of u=u — (black). Inhibition of u is achieved for

p )0, while the couplings a and P reflect the self-limiting
behavior of the inhibitor and its stimulation by the activa-
tor, respectively. The small number e defines the fast-
inhibitor limit. This limit is opposite to the limit assumed
in phase-field models [10] and spiral wave dynamics [8).
The fast inhibitor assumption appears to be the simplest
assumption that allows the elimination of one of the
fields, giving rise to spatial nonlocality for the remaining
field without introducing temporal nonlocality. A similar
calculation can be done for the slow-inhibitor limit [11),
but due to temporal nonlocality, the resulting equations
are more complicated, obscuring the essential physics.

We begin by discussing the interaction of fronts, illus-

trating the property of self-avoidance present in the
reaction-duffision pair (I), for certain parameter ranges.
Figure 2 shows a simulation of a one-dimensional version
of (I ) with periodic boundary conditions. The patterns
are defined by the sharp interfaces of the u field. The pa-
rarneters are such that the u=uy region expands into
the u=u —region. When the interfaces get too close, the
exponential tails of the i field begin to overlap, causing a
repulsion which stabilizes the final field configuration. In

the derivation of the two-dimensional contour dynamics,
we shall analytically see the source of this repulsion.

To derive an interface evolution equation for two-

dimensional patterns, we take the fast-inhibitor limit, set-

ting a =0 and thus slaving v to u,

((x,t) =PJ d'x'Q(ix —x'i)u(x'),

where the Green's function 5'(r) =Ko(r/&)/2z, and

=a ' . Substituting for v in Eq. (la), we obtain the
variational dynamics u, = —89[u]/bu, with

P[u) = d'x[ ,' D-(Vu)'+f(u))

+ " d'x d'x'u(x)Q(i x—x'i)u(x') .
2 4 4

(3)

The functional 7 decreases monotonically in time, possi-

bly reaching a local minimum. For t. &0, there is no

such P. The necessity of a large-amplitude perturbation
for the initiation of nontrivial pattern formation follows

directly from the bistability of F(u) and the variational
form of the dynamics.

We would like to find an equation of motion for the in-

terface r(s) in the form r, = —bP[r]/br, starting from

the equation u, = —bP[u]/bu. To determine the bound-

ary functional 9'[r) from P[u) in (3), we restrict our-
selves to studying the dynamics of a single island of
u;„=u+in an infinite sea of u,„t=u —.We make two as-

sumptions to evaluate the term involving Vu: The profile

is sharp, so that the gradients are localized on the bound-

ary I, and the curvature of the boundary does not

significantly affect the interface profile. The derivation of
the contour dynamics using asymptotic expansions will be
discussed elsewhere [11). We proceed here with a heuris-

tic derivation because it yields greater physical insight.
The integral of (Vu) is then proportional to the perime-
ter of the shape, the constant of proportionality being

approximately D(u;„—u«I) /I, with I a characteristic
length scale of the profile. One cannot determine 1 fur-

ther without specifying the precise form of F.
To evaluate the remaining terms in P, we take u to be

piecewise constant. The first term gives fF(u) =F(u;„)
x f;„+F(u,„i)f,„i,where in and out refer to the areas in-

side and outside of I . The term involving 0 can be writ-

ten as
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This may be further simplified by an application of
Stokes' theorem and the defining relation for 9, (V

)Q(x) = —B(x). Apart from an unimportant con-

stant, the energy is then

2Q 2

V[r] =11'+yL — ~~ f~ds(tds'i t'S(Z), (5)
2

where y=D/3. /21,

II=F(u;„)—F(u,„,)+ (pP&'/2)(u „—u,'„,),
0 10 20 30 40 50

X
FIG. 2. Space-time portrait of the interaction of two fronts,

from numerical solution of Eq. (l) with a=0.008, D=0.2,
p=O. I, a=P=0.2, F'(u) =au+bu +du, with a=0.23,
b= —1.23, and e=l.O. Solid lines show u(x, t); dashed lines
are t (x,t), with time increasing upward.

and A =u;„—u,„i,R =r(s) —r(s'), R = ~R~. We inter-
pret ) as a line tension (associated with the boundary
length L) and 11 as a pressure (associated with the en-
closed area A). The pressure, which can be of either sign,
reflects the difference between the values of the energy
F(u) inside and outside I . Note from the definition of 11
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rt. r, -—H —pre(s)

—pP&'4'() ds'R(s, s') x t(s') 0'(R) . (7)

The prime on 5' indicates a derivative with respect to R,
and the cross product is a scalar in two dimensions.

Note that the repulsion between adjacent fronts de-

pends only on the fact that 0) 0, and not on the specific
form of g [as can be seen from (5) and the variational
form of the equation of motion]. This is important, be-

cause in a more exact derivation of the contour dynamics
that takes the interface profile into account, the function

appearing in Eq. (7) may not be 0, but rather one with a

less singular behavior as R 0. Note, however, that 0
has only a logarithmic, integrable singularity at the ori-

gin, so the dynamics derived here is well defined. Even in

the presence of such a cutoff' in 0 the dynamics would not

be qualitatively aAected, since the sign of 5' alone deter-
mines whether fronts are attracted or repelled and the

large R behavior of the purported function would be un-

changed (i.e., exponential decay).
By further redefining the time scale such that the

coefficien of the nonlocal term in (7) is unity, one finds

that the coupling of u to ~ has created an eAective energy
F(u)+(pP( /2)u whose minima determine the values

u;„and u,„t.The nonlocal terms in (5) [and (7), below]
have the appearance of a self-induction interaction, al-

though 9' provides an exponential screening. While at
first sight somewhat unusual, a coupling between tangent
vectors appears in other systems with piecewise constant
fields [12,13].

Next we determine the equation of motion of r from
that of u. This has two parts: (i) relating the time
derivatives u, and r, , and (ii) relating the functional
derivatives 8/bu and b/br. Since u, is nonzero only near
the boundary, the approximation u, =(h/l)n. r, is valid.
Likewise, the variation 6/Bu is large only near the bound-

ary, suggesting the identification [13] 8/Bu —(I/6)
xtt (b/br). Rescaling time by (6/I), the equation of
motion is

only three relevant parameters remain: ( and a rescaled

y and H. The model (7) was investigated numerically
with a pseudospectral technique. Figure 3 sho~s the evo-

lution of a circle seeded with sinusoidal perturbations. A

complicated labyrinth forms due to the repeated fingering
of the boundary. The interface never crosses itself, due to
the repulsion between the adjacent fingers. The competi-
tion between the inward pressure H and the repulsion
within a finger sets the finger width, while the interfinger
distance is set by the inhibitor length scale g alone. The
nonlocal nature of the dynamics severely limits the time
scale over which the evolution may be followed numeri-

cally; with further computation, the pattern in Fig. 3

would continue to evolve beyond the final picture.
Figure 4 shows the evolution of an island with a larger

value of H than that in Fig. 3, implying a larger energy
diA'erence between the two possible homogeneous states
of u. The area enclosed by the interface changes dramat-

ically over time, the pattern simply shrinking to a circle.
This shrinkage of a fingered structure has also been seen

in the work of Lee et al. [6].
To gain insight into the basic mechanism of the finger-

ing instability, we develop an approximate local dynamics
valid when gtr«1 and the shape is approximately circu-
lar [14]. Observe that the most important contribution to
the double integral in (5) is from the region ~s' —s~ ~ g.
Near the point r(s), expand the scalar product as

t(s) t(s')=1 —(1/2)(s —s') x(s) + . , then perform
the s' integral over the extended region [—~,~] to ob-

tain an effective local energy functional P,, :

The first term contributes to an eA'ective line tension„
while the second we recognize from elasticity theory as
the bending energy of a rigid rod. A detailed calculation
yields y, , = —p( /4 and k, =pg /8. While k, is positive,

y, , is negative The eff'ecti. ve line tension y= )+ y, , can be

negative, favoring proliferation of the interface. Again,
note that the sign of y, , is opposite that of 0, and hence

the physics of fingering depends only on the sign of 9 and

P P,

FIG. 3. Numerical solution of (7) with y=2.0, II =0.02, and
1.0. The initial condition is a perturbed circle of radius 15,

and the time interval between shapes is 12.
FIG. 4. Shrinkage of a domain with y=2.0, H=2.0, and

g =1.0. The time interval between shapes is 1.
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not its specific functional form.
Under the local approximation, the interface motion is

n r, = —l1 —etc —k, ( (x„+—,
' tc3), (9)

similar to "geometric" models [15] of crystal growth. In

a linear stability analysis of a circular shape, the growth
rate o„ofthe nth mode is o„——yn k—,( n .For

y & 0, there is a band of unstable modes whose maximum
extent is limited by the rigidity. In the numerical studies
shown here, the effective tension is negative in both cases.
In Fig. 3, the inward pressure is insufficient to prevent the
proliferation of the interface, while in Fig. 4 the larger
pressure overcomes the negative surface tension.

In summary, starting from a reaction-diffusion system
in two dimensions, we have constructed a boundary dy-
namics useful in describing pattern formation. Possible
extensions include studying inertial effects from higher
order terms in e, and the application of these methods to
higher-dimensional problems. It is also of interest to
determine if the particular chemical kinetics in the exper-
iments of Lee et al. may indeed be mapped onto the in-

terface model developed here. Finally, it is possible to ex-
tend these methods to study the more physically relevant
slow-inhibitor problem [11]. Perhaps issues such as spiral
wave stability [8,16] could be given a more intuitive in-

terpretation when studied from a geometric viewpoint.
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