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Finite-size corrections to scaling laws in the centers of Landau levels are studied systematically
by numerical calculations. The corrections can account for the apparent nonuniversality of the
localization length exponent v. In the second lowest Landau level the irrelevant scaling index is
y;„= —0.38 + 0.04. At the center of the lowest Landau level an additional periodic potential is
found to be irrelevant with the same scaling index. These results suggest that the localization length
exponent v is universal with respect to the Landau level index and an additional periodic potential.

PACS numbers: 73.40.Hm, 71.30.+h, 71.50.+t, 71.55,Jv

The transitions between different plateaus in the inte-
ger quantum Hall effect can be understood as disorder-
driven metal-insulator transitions in the centers of Lan-
dau levels. These transitions are characterized by finite-
size scaling laws [1]. Experimental measurements of the
Hall and longitudinal resistivities showed that the cor-
responding localization length exponent v = 2.3 6 0.1
independent of the Landau level provided the spin split-
ting of the levels was resolved [2,3]. Numerically it was
found that the localization length AM(E) for cylinders of
circumference M behaves near the critical energies E, as

AM(E) = MA(M/((E)),

AM(E, o, . . .) = MA(M/((E), Mj(~„, . . . ), (2)

with ((E) oc ~E —E, ]

" and v = 2.35 6 0.03 [4—10].
This universal behavior was observed for the lowest (n =
0) Landau level independent of the correlation length of
the disorder potential and in the second lowest (n = 1)
Landau level provided that the correlation length was not
smaller than the magnetic length. For shorter correlation
length no universal scaling behavior was observed and
the numerical data were inconclusive. It remained an
open question whether the localization length exponent
v was dependent on the Landau level index [6,9—11]or the
available systems were too small to observe the scaling
behavior [8].

Chalker and Eastmond observed that deviations from
scaling behavior in an extension of the network model
with a distribution of node parameters can be analyzed
in terms of irrelevant scaling fields [12,13]. They found
that the deviations of A from its fixed point value scaled
ike M —0.38+0.02

In this paper it is shown that their ideas can more
generally explain the observed deviations from scaling.
It is found that deviations from the finite-size scaling
law Eq. (1) scale by themselves and can be described
by an irrelevant scaling index y;„. In terms of a field

theory describing the transition the corrections are due to
irrelevant scaling fields [14,15]. In particular, it is shown
that the localization length is a function of at least two
scaling fields,

where (;„is a function of the correlation length o of the
disorder potential. The function A is an analytic func-
tion of the relevant scaling field AE = (E —E,)/I' and
an irrelevant scaling field (;„that is related to the cor-
relation length o. I' is a measure of the disorder. In the
present context the Fermi energy plays the role of the
temperature in thermodynamic phase transitions. Scal-
ing implies that the scaling variables are proportional to
powers of the system size with the exponents being the
scaling indices

AM(E, o, . . .) = MA(M" AE, M""'(;„,. . .).

tJ = 1/v is the only relevant, i.e. , positive, scaling index,

y;„ is the largest irrelevant scaling index, and ".. ." repre-
sents possible further irrelevant scaling fields with smaller
scaling indices. For small arguments the function A can
be expanded in a Taylor series [16,17]

A = A, + a(M"AE)'+ bM"- ( +

A linear term in AE is missing since A is symmetric in
AE due to the coincidence of the mobility edges at E =
E,. Equation (4) is used in the following to extract the
irrelevant scaling index y;„ from the numerical data. In
the absence of any analytic information about the scaling
function A it cannot be ruled out that 6 is zero at the
critical point. In this case the first nonvanishing term
of the series expansion would be quadratic in M"""(;„
and the numerically determined y;„would be twice the
scaling index of the field theory.

In order to study the corrections to scaling, AM(E, )
was calculated for Pz = (cr2+ l~) jlz, where l, is the mag-
netic length 5/eB, ranging from 1 to 2 while M varied be-
tween 16 and 128 (in multiples of v 2+1,) [18]. For every
value of P2 the length (;„was adjusted in order to make

AM/M(E, ) a function of a single variable M/(;„(P ).
The resulting function is shown in Fig. 1. By performing
this fit the overall scale of (;„cannot be fixed and hence
is arbitrary in these calculations. The dependence of the
length scale (~„on P~ is shown in Fig. 2. It grows by
more than 104 when the correlation length cr is decreased
from 0.8l, to 0. This large increase in the cutofF length
scale for finite-size corrections is the reason why previous
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FIG. 1. The renormalized exponential decay length AM/M
for P = 1.0 (o), 1.1 (o), 1.2 (e), 1.3 (*), 1.4 (x), 1.5 (~), 1.6
(a), and 1.7 (~). The dashed line represents the asymptotic
value A, = 1/ ln(1+ ~2).

finite-size scaling studies were unable to observe the true
asymptotic scaling behavior [8—10]. The observation of
the corrections to scaling implies that not only the fixed
point value A, of the scaling function but also the local-
ization length exponent v are universal and independent
of the Landau level index and microscopic details of the
disorder. However, in order to observe the scaling as a
function of AE the system width M would have to ex-
ceed 10s for cr = 0, considerably larger than the presently
accessible M = 256 [10]. It is not clear why the length
scale (;„becomes so large in the n = 1 Landau level while
it seems to be unnoticeably small in the n = 0 ? andau
level.

Figure 3 shows a doubly logarithmic plot of A —A, as
a function of M/(~„. A, = 1/ln(1+ v2) = 1.13459. . .
was used which is close to the best fit estimate of A, =
1.14 + 0.02 [13). The slope of the dashed line is given by
the irrelevant scaling index y;„= —0.38 + 0.04.

Another situation where the scaling function A(b, E =

0) at the metal-insulator transition does not take on its
critical value A, even for the largest numerically accessi-
ble systems arises in the presence of a sufficiently strong
additional periodic potential [19—21]. Here the Hamilto-
nian is modified by an additional term

V(r) = 4Eo cos(~27rz/a) cos(V 2n y/a), (5)

where the period a is chosen commensurable with the
system width M, i.e. , n = 2mlz/az = q/p, with integer p
and q. The strength Eo of the periodic potential is as-
sumed to be small compared to the cyclotron energy her,
so that the single Landau band approximation remains
justified, but need not be small compared to the disor-
der I'. The calculations were performed for 6-correlated
disorder potential in the lowest Landau level and two dif-
ferent values of n. For o. = 1/3 the Landau band splits
into 3 subbands and the only critical energy is situated

FIG. 3. Deviation of the scaling function A from its asymp-
totic value A, . The data and fitted scaling function of Fig.
1 are shown. The scatter of the data for large M/(;„ is due
to the statistical errors of the data that become comparable
to the deviation A —A, . The dashed (shifted) line with slope

y;« ———0.38 serves as a guide to the eye.
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FIG. 2. The length scale g;„(in units of ~2ml, ) as a func-
tion of p . The value at p = 1 has been arbitrarily fixed to
(i„=50 000.

FIG. 4. The renormalized exponential decay length AM/M
for n = 1/3 and Ep = 0.75 (o), 1 (o), 1.25 (e), and 1.5 (*).
The dashed line represents the asymptotic value A, .
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FIG. 5. The renormalized exponential decay length AM/M
for n = 3/5 and Eo = 1 (o), 1.25 (o), 1.5 (*), 1.75 (*), 2 (x),
and 2.25 (~). The dashed line represents the asymptotic value

A, .

FIG. 7. Deviation of the scaling function A from its critical
value A, = 1/ln(l + ~2) for n = 3/5. The dashed line has
slope y3/5

———0.42 (cf. Fig. 3).

at the center of the band. For n = 3/5 the Landau
band splits into 5 subbands that each contain at least
one critical energy for sufBciently strong periodic poten-
tials [19—21]. In both cases the energy of the critical point
at the center of the band is not changed by the periodic
potential. The fitted scaling functions AM(E, )/M are
shown in Figs. 4 and 5 for o. = 1/3 and 3/5, respectively.
The irrelevant length scales (q/3 and (3/5 diverge approx-
imately proportional to Eo with m - 8.7 and m = 5.8,
respectively. The irrelevant scaling indices y~ can be de-
duced from Figs. 6 and 7 to be tlat/3 ———0.38 6 0.04 and

g3/5 ——0.42 + 0.04. Based on these data there is no sig-
nificant difference between the scaling indices for o; = 1/3
and 3/5. Furthermore, the scaling indices yi„, y, and
the one observed by Chalker and Eastmond [12] agree
within the numerical uncertainties [22].

In conclusion, the observation of corrections to scal-
ing according to Eq. (3) strongly supports the notion
of universal metal-insulator transitions at the centers of

Landau levels in the integer quantum Hall eKect. The
occurrence of very large irrelevant length scales explains
why the universality of the localization length exponent
v could not be observed directly in previous calculations.
According to an argument by Lee, Wang, and Kivel-
son the scaling function A is related to the longitudinal
conductivity cr~ [13]. The universal value of A, would

thus imply that the peak value of o in the center of
each Landau level is 3e2/tt, independent of the Landau
level index. It is further shown that an additional peri-
odic potential is an irrelevant perturbation at the critical
point even though it can create additional critical states
in each Landau level [19—21]. The observed values for
the largest irrelevant scaling indices, y;„= —0.38 6 0.04,

yy/3 = —0.38 60.04, and y3i5
———0.42 6 0.04, are further

important parameters, besides the localization length ex-

ponent v = 2.35 6 0.03 [8], that could be used to check
an analytic theory of the integer quantum Hall eKect.
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FIG. 6. Deviation of the scaling function A from its critical
value A, = 1/ln(1+ ~2) for n = 1/3. The dashed line has

slope yg/3 ——0.38 (cf. Fig. 3).

Present address: Max-Planck-Institut fur Kernphysik,
Saupfercheckweg 1, D-69117 Heidelberg, Germany.

[1] A. M. M. Pruisken, Phys. Rev. Lett. 61, 129? (1988).
[2] H. P. Wei, D. C. Tsui, M. Paalanen, and A. M. M.

Pruisken, Phys. Rev. Lett. 61, 1294 (1988).
[3] S. Koch, R. Haug, K. v. Klitzing, and K. Ploog, Phys.

Rev. Lett. 67, 883 (1991).
[4] J. T. Chalker and P. D. Coddington, J. Phys. C 21, 2665

(1988).
[5] B. Huckestein and B. Kramer, Phys. Rev. Lett. 64, 1437

(1990).

[6] B. Mieck, Europhys. Lett. 13, 453 (1990).

1082



VOLUME 72, NUMBER 7 PHYSICAL REVIEW LETTERS 14 FEBRUARY 1994

[7] Y. Huo and R. N. Bhatt, Phys. Rev. Lett. 68, 1375
(1992).

[8 B. Huckestein, Europhys. Lett. 20, 451 (1992).
[9 B. Mieck, Z. Phys. B 90, 427 (1993).

[10] D. Liu and S. Das Sarma, Mod. Phys. Lett. B 7, 449
(1993).

[11 H. Aoki snd T. Ando, Phys. Rev. Lett. 54, 831 (1985).
[12 J. T. Chalker and J. F. G. Esstmond (unpublished);

3.F.G. Eastmond, Ph.D. thesis, Oxford University, 1992.
[13] D.-H. Lee, Z. Wang, and S. Kivelson, Phys. Rev. Lett.

70, 4130 (1993).
[14 F. J. Wegner, Phys. Rev. B 5, 4529 (1972).
[15] M. N. Barber, in Phase &ansitions and Critical Phe

nomena, edited by C. Domb and J. Lebowitz (Academic
Press, London, 1983), Vol. 8, pp. 146—266.

[16] In Ref. [8] it wss claimed that A csn be well approximated
by A = A, + aM" ib, E[ with A, = 1.19 + 0.04. However,
a careful reexamination of the data presented in Ref. [8]
shows that a quadratic AE dependence, necessary for

analyticity of A in AE, and A, = 1.13+0.01 fit the data
better for small AE.

[17] It is assumed that I,'i„ is not a dangerous irrelevant vari-
able.

[18] Actually, the calculations were performed for AE = 0.01.
However, due to the quadratic dependence of A on AE,
the resulting error is much smaller than the statistical
error.

[19] D. Thouless, M. Kohmoto, M. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[20] B. Huckestein snd R. N. Bhatt, Surf. Sci. (to be pub-
lished) .

21 Y. Tan (to be published).
22 It seems worthwhile to note that Wegner's correction-to-

scaling exponent b„= [y;«[/y = [y;„[v turns out to be
0.94 6 0.1 [14]. Since this is compatible with 4, = 1, it
might imply that corrections to scaling are analytic in
AF.

1083


