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Charging Effects in Ultrasmall Quantum Dots in the Presence of Time-Varying Fields
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The influence of charging effects on time-dependent transport in small semiconductor quantum
dots with arbitrary level spectra is studied. Starting from an explicit time-dependent tunneling
Hamiltonian, a non-Markovian master equation is derived which is also valid in the nonlinear re-
sponse regime. The many-body nonequilibrium distribution functions of the dot are calculated and
the I-V characteristic of the structure including the displacement currents is obtained. New resonant
features show up in the Coulomb oscillations and in the Coulomb staircase, and a new possibility
to realize electronic pumps is described.

PACS numbers: 73.40.Gk, 73.20.Dx, 73.50.Fq, 73.50.Mx

The inhuence of the Coulomb interaction on low-
temperature quantum transport through metallic or
semiconducting islands (quantum dots) has been the sub-
ject of many theoretical and experimental papers (see,
e.g. , [1] and references therein). It shows up in a vari-

ety of interesting effects like, e.g. , Coulomb blockade and
resonant tunneling phenomena. However, the investiga-
tion of time-dependent perturbations and of fiuctuations
of the electrodynamic environment has started only re-
cently, either neglecting charging effects [2—11] or con-
sidering the metallic case for time translational invariant
systems [12,13]. An explicit time dependence of the ap-
plied voltages introduces a new energy scale hu in the
problem, and a multitude of new effects is expected to
occur, some of them relevant to device applications such
as high-frequency oscillators.

In this Letter, we consider an interacting quantum dot
with an arbitrary level spectrum subject to an explicit
time-dependent classical field. It can describe a peri-
odic modulation of the Fermi energy in the leads (i.e. ,
time-dependent bias voltages) or time-dependent pertur-
bations for the quantum states in the dot. We are espe-
cially interested in the effects of the Coulomb interaction
in the limit of low tunneling rates but finite level spacing,
so that resonant tunneling with thermally broadened line
shapes will occur. In contrast to Refs. [12,13], we calcu-
late the complete time-dependent (many-body) distribu-
tion function of the dot using a non-Markovian master
equation approach. As a consequence we obtain new fea-
tures in the Coulomb oscillations which cannot be seen
in the time-independent case or for continuous level spec-
tra like in metals. Furthermore, for certain asymmetric
level structures in the nonlinear response regime, a new
mechanism to realize an electronic pump is described.

An important consistency check for our formalism is
the fact that the sum of all currents into the system (in-
cluding the displacement currents) is conserved [9]. We
have included the displacement currents in our formalism
within the Coulomb-blockade model to make our calcu-
lations more realistic. However, since we are mostly in-
terested in the case of low capacitances (where charging
effects are important), we do not obtain a significant in-

Buence of the displacement currents on the I-U charac-
&R+ &a Im.+ ~ I g R (4)

teristics.
As a model for an interacting quantum dot coupled

to two reservoirs by tunnel junctions with capacitances
CL, and CR, we will use the time-dependent tunneling
Hamiltonian H(t) = Hp(t) + V(t) + Hz . Here,

Hp(t) = ) ) ~i, (t)a&~ ai, + ) eicIci (1)
a=I,R A; I

describes noninteracting electrons in the reservoirs jn)
and in the dot, A time-dependent shift of the Fermi
energy of the electrons in the leads has been included in

~i, (t) = ei, + b, (t). The tunneling part is given by

Hz = g QAi(Tg&az ci + c.c.), where TP& denotes the
tunneling matrix element, and the Coulomb interaction
is approximated by the Coulomb-blockade model [14—16],

V(t) = E~[N~+ np(t)], (2)
corresponding to the equivalent circuit (SET transistor)
schematically drawn in Fig. 1. The particle number in
the dot is denoted by ND = Pi cici, Ec, = e /2C is
the charging energy with C = Cl. + CR + C~, whereas
enp(t) = Cr, Vr, (t) + C~V~(t) + C&V&(t) is related to
the polarization charges produced by the time-dependent
voltages of the left and right reservoirs eVr, /R(t)

/~I+ 61./~(t) as well as a time-dependent gate voltage
eV~(t) = pg + A~(t) applied to the quantum dot by the
capacitance C~.

The tunneling currents from the left/right reservoir
into the quantum dot are given by

d
Ic/R(t) = e—(&I/~)~(i)dt

(3)

where X~ = Q& a& ai, is the particle number in reser-
voir n and p(t) denotes the density matrix of the system
at time t. The expectation value (N ) can only change
due to tunneling processes; therefore, the capacitive cur-
rents QL, /~ (Ql./R is the charge on the left/right tunnel
junction; see Fig. 1) are not included in (3) and have to
be added separately. The displacement currents are fixed

by electrostatic considerations. The total current is
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standard time-dependent unitary transformation defined

by U(t) = exp(i f dr[+ 6 (r)N + b,~(r)N~]/h)
where A~(t) = C Q,. z z C,b„(t)describes an effec-

tive time-dependent perturbation on the dot. The re-

sult is H(t) = Hp + V + HT(t) where Hp is the time-

independent part of (1) (a constant shift of all energies
has been included in e~), V = Ec N~(N~ —1), and HT (t)
contains now time-dependent tunneling matrix elements

T&&(t) = TP& exp(& J dr[6~(r) —b~(r)]}, and for an

arbitrary interaction V on the dot the current Il.)R(t)
will depend only on the difference of the external volt-

ages Al, y~(t) —As(t). The differences that appear in the
Hamiltonian, A~ —A~, are linear functionals of A~ —As,
viz. , bl, —A~ = [(C~+Cs)(Ag —As) —C~(AR —Zks)]/C,
and analogously for AR —b,~. Equation (3) is unchanged

by the unitary transformation since NL/R commutes with

U(t). A systematic perturbation expansion in HT then
yields

Q, V

(-R %

Cg,

lg (l

gV
VRV,

FIG. 1. Equivalent circuit of the double-barrier structure
in the static case. CI„CRare the capacitances between the
dot and the leads, and C~ is the capacitance between the dot
and the gate electrode. Q is the excess charge on the dot, and
the Q, are the charges at the capacitor plates.

and IR is obtained by interchanging L and R. The ca-
pacitive current in the gate electrode is denoted by Is.
A direct consequence is the conservation of all currents
IR + Il. + I~ = 0, as emphasized in recent works by t

Biittiker et al. [9]. For Cs = 0, we obtain at each t I "(t) = e) dt'I rr (t, t')[N~(r') —N~(r)]P, (t'),
Il. (t) = —IR(t), but the tunneling currents (3) do not rr'

have such a property since the charge Q(t) on the island
is a function of time [17]. Generally, Eq. (3) gives the to- where ~r) are the eigenstates of Hp + V with energy E„,
tal current only if it is used to calculate the time-averaged P„(t)= (r~ j(t)~r) are the diagonal elements of the den-
current [10]. sity matrix, N (r) = (r~N ~r) is the particle number in

To calculate the tunneling currents (3), we perform a reservoir o; for the state ~r), and I'„(t,t') are the time-
dependent matrix elements

2 —,, —, i t' . I'&2„„(&, &') = —M (r~HT (t)~r')(r'~ FIT(8')~r) exp —
~
E„—E„+ i —

~

(&
—&'.) )hz h), " " 2) (6)

P„(t)=) dt I'„„(t,t') [P„(t')—P„(t')]. (7)

for the transition r' (at time t') ~ r (at time t) Nondia. g-
onal elements of p(t) are of higher order in HT compared
with the diagonal part P„(t);they can be neglected in
the limit of small tunneling rates I' « kT, 6E,u This is.
equivalent to neglecting initial correlations between the
dot and the reservoirs. Furthermore, we have included
a finite lifetime r = z in (6) due to tunneling, where
I' = P 1 and I' = 2n P& ~TIT~ b(E —e), ) is the tun-
neling rate into reservoir o. (for simplicity, we assume I'
to be independent of the state l and the energy). This
is equivalent to the well-known inclusion of collisional
broadening effects in kinetic equations [18,19].

In the same way, we expand P„(t)in powers of HT and
obtain the following non-Markovian master equation

Equations (5) and (7) are the result of our work in

general form. They allow us to treat time-dependent,
nonlinear transport problems in the Coulomb blockade
regime. We will now approximate the interaction by the
Coulomb-blockade model (2), which has turned out to be
sufBcient to describe the charging effects in small quan-
tum dots qualitatively, provided that the number of elec-
trons is not too small [20].

For weak tunneling and large reservoirs, we can fac-
torize P„(t)= PQP, (t) into an equilibrium part PP for
the reservoirs (described by the chemical potentials p
according to the time-independent part Hp) and a part
P, (t) for the dot. In order to find the stationary value for
P, (t), we take a periodic modulation 6 (t) = b, g sinut
(6 = 6 —A~) and perform a Fourier transformation
P, (t) = g P, (m) exp( —immit) with the result

( .mMl-
~

N, —i
~
P, (m) = ) n((s()P„(m)

) ) E„(Eg,' „,(,)) [2n((s) —1][P,(n) + P„(n)]+ (m ~ m)*-
a.l

(8)

where s = ~(n((s))) denotes a state of the dot characterized by the occupation numbers n( of its single particle levels
l, s( is the state obtained from s by reversing the occupation of level l, i.e. , n~(s() = 1 —n((s), N, = P( n((s), and
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EAl ~ U'+
& + ~ P~ + & 2 w~ere &~ = 2~&& is the change of the Coulomb energy due to the addition of one partjc&e

+
to the dot. Furthermore, with p = 1/kT and f(E) = (exp pE + l )

(E) = i ") Ji+~ Jk+ Y(E+ k~),

1 1 1,PEi (I PE&(E) =-f(E)+ & -+i I+4l --i
2 47ri 2 2vr ) i2 2vr

where J~ and @ denote the Bessel and digamma functions. Finally, the tunneling current reads

: 10)

I. "(m)=-„i. ) N, P.(m)- ) ) Z„.(E„'„,l)P.(n)+(m- m)-
S n sl

Equation (8) is a linear set of equations for the Fourier
components of the probability function P, (t). It can be
solved numerically in a straightforward way and gives di-

rectly the time dependence of all many-body distribution
functions of the dot together with the tunneling currents
(11). It can be applied to the nonlinear response regime
(i.e. , high bias voltages or high time dependent pertur-
bations), small or high frequencies, arbitrarily strong
Coulomb interaction, and discrete level spectra. Fur-
thermore, no assumptions are necessary for the distri-
bution functions of the dot which can differ considerably
from the equilibrium value. For the time-independent
case, Eq. (8) reduces to the Pauli master equation which
has been used in Refs. [20—23] to describe Coulomb os-
cillations and the Coulomb staircase in small quantum
dots. The effect of time-dependent perturbations shows

up clearly in the argument E+ khcu (with E = E&') in

(9). It coincides with the one-particle excitation (tunnel-

ing) spectrum ei+ Uiv+ khan of the dot since the electrons
can now absorb or emit energy quanta hu.

We will now discuss several applications of the formal-
ism presented above. As a simple example we consider
the dc component of the current through a double-barrier
quantum well with two degenerate states (ei ——e2 = e).
Applying an ac gate voltage with frequency u to the dot
(b, L, = A~ = 0, A~ g 0), the Coulomb staircase re-
veals a fine structure (Fig. 2) with additional steps at
e+2NE, +khan (k g 0; N = 0, 1) due to the new excita-
tions from the time-dependent perturbation. The dashed
line shows the static case. Even for many levels in the
dot with a continuous spectrum (where no fine structure
due to the finite level spacing can be observed), these
side steps will remain. In the same way, the Coulomb
oscillations will also show additional resonances at a dis-
tance nba (n = 0, +I, +2, . . .) from the conventional
main peaks at e+ 2NE, (N = 0, 1). However, the situ-
ation changes drastically if the two single particle levels
are no longer degenerate (ei ( e2). In the static case, we
get two Coulomb peaks at ei and e2 + 2E, (inset Fig. 2,
dashed curve); i.e., the excitations eq and ei + 2E, are
hidden without time-dependent perturbations. The rea-
son is that on lowering the gate voltage (for small bias
voltage and particle number N = 0), the first excitation
will be N = 0 —+ K = 1, occupying the level l = 1;
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FIG. 2. dc current versus eVB;~, for T = 5, F~ = 75,
~ = 50, 6 = b = 0 (dashed line), 4 = 6 = 50 (solid
line), and Cr, = CR = 10 . Energies are measured in units
of the total tunneling rate, I" = I L, + F~, where FL, = F~,
currents in units of el'/5, frequencies in units of I'/fi, and ca-
pacities in units of e /I'. Inset: dc current versus eV~C/Cg for
two nondegenerate levels with ~i, 2 ——~12.5; other parameters
as before.

600 800

! i.e. , the first peak is at ei. After this transition, the dot
contains exactly one particle which cannot escape due to
the Coulomb blockade. The next possible excitation for
N = 1 ~ N = 2 is at energy e2+2E, and the ones with e2
and ei +2E, are not visible. In the time-dependent case,
the particle in the dot can absorb modulation quanta of
energy ~ and thus it can leave the dot or occupy the level
l = 2. Therefore, the complete tunneling spectrum will
show up in the Coulomb oscillations (see inset Fig 2) i.n
contrast to the static case. In other words, the effect of a
finite charging energy in the presence of time-dependent
perturbations is not only a simple shiR of the resonances
at ei (l = 1, 2, . . .) by (I —1)2E, but instead a splitting
into many peaks at ei + 2NE, (N = 0, 1, 2, . . .) where
the amplitude is maximal at N = l —1 and the peaks
with N = l —1+ k correspond to absorption (emission)
of energy quanta khan. As in the case with the Coulomb
staircase, these fine structures are not observable for a
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FIG. 3. dc current versus eV~C/Cs at zero dc bias voltage
and A =30, A =0. Here, T =2, a=20, andtheother
parameters are as before. The structure acts as an electron

pump.

continuous spectrum in the dot where only the satellite
peaks shifted by k~ will remain.

Another possibility is to apply an ac signal to the reser-
voirs such that b,l. —AD g O, b,R —b,~ = 0. Even for
zero dc-bias voltage, we obtain a positive or negative dc
current through the quantum well due to the absorp-
tion or emission of energy quanta in the left reservoir.
The effect is possible only if there is an asymmetry of
level(s) in the dot with respect to the chemical potential
(ls = pl. = pR) of the reservoirs: if the level closest to
p is above p, there will be a positive current, and vice
versa. Consequently, the system acts like an electron
pump in this case and the form of the Coulomb oscil-
lation peaks are changed dramatically as illustrated in
Fig. 3. This example of a nonlinear response is a generic
result as can be seen by taking the m = 0 component
of (ll) for the case of a single nondegenerate level in the
dot and expanding to second order in b,a. For u —+ 0, we
obtain ILd' f"(eo —ts)(b~)z. The second derivative of
the Fermi function will produce the positive and negative
regions seen in Fig. 3.

In conclusion, we have presented a formalism that al-
lows us to calculate the frequency-dependent I-V char-
acteristics of strongly interacting quantum dots. It
takes into account nonequilibrium many-body distribu-
tion functions of the dot, it is not restricted to the linear
response regime, and it is exact in the limit of small tun-
neling rates. We have also included the contribution of
the displacement currents caused by the capacities and
gate electrodes. The presence of five energy scales leads
to a multitude of physical situations that will be studied
in future work.
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work and for many helpful discussions. We would also
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