
VOLUME 72, NUMBER 7 P H YS ICAL R EV I EW LETTERS 14 FEBRUARY 1994

Phonon-Mediated Attraction between Large Bipolarons: Condensation to a Liquid
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Self-trapped carriers of large bipolarons are redistributed among sites of their molecular orbitals in
response to atomic motions. This eAect lowers the phonon frequencies. The dependence of the zero-
point energy on the spatial distribution of large bipolarons produces a phonon-mediated attraction be-
tween them. This dynamic quantum-mechanical eAect fosters the condensation of large bipolarons into
a liquid at sufficiently low temperatures.

PACS numbers: 71.38.+i, 74.20.Mn, 74.25.Dw

Self-trapping occurs when an electronic charge carrier
is bound in a potential well produced by displacements of
atoms from the equilibrium positions they assume in the
carrier's absence. The binding energy of the self-trapped
carrier, denoted as E,t, may be measured by photoioniz-
ing it.

Upon self-trapping, an electronic carrier can only move
when the surrounding atoms change their locations.
Self-trapping is therefore treated within the adiabatic ap-
proach which constrains the electronic carriers to follow
the atomic motions. The adiabatic treatment applies
when the motion of the electronic carrier within its self-
trapping potential well is faster than the vibrational fre-
quency, rp: E,t & hcu. Aside from one-dimensional mod-
els, adiabatic treatments yield two distinct types of self-
trapped states distinguished by the range of the predom-
inant electron-lattice interactions [1-5].

A "large" polaron can form when the long-range
electron-lattice interaction produced by the dependence
of a carrier's energy on the positions of ions of an ionic
solid (through their Coulomb interactions) dominates
[1-3,5]. The strength of this interaction is proportional
to P=(a ) ' —(ap) ', where ep and e are the static
and optical dielectric constants, respectively. Formation
of a large polaron requires W & E,t & hcp, where W is the
free-carrier electronic bandwidth. The radius of the large

polaron's self-trapped state is then R = a JW/E„, where
a is the lattice constant. Since the large polaron extends
over multiple atomic sites, it moves in a continuous
manner through a medium that may be approximated as
being continuous.

A "small" polaron forms when a short-range electron-
lattice interaction (e.g. , the deformation potential in co-
valent materials) is paramount. A self-trapped carrier
then collapses to a single site [1,2,4,5]. The energetic sta-
bility of a small polaron requires E,t ) W. As a result of
its severe confinement, a small polaron typically moves
incoherently by phonon-assisted hops between adjacent
sites.

A bipolaron forms when two carriers are self-trapped
within a common potential well. With only the long-
range interaction two carriers can be bound within the
same potential well if ep& 2e [5]. This large bipolaron
is energetically unstable with respect to forming two

separate large polarons by at most e /epR [5]. However,
the omnipresent short-range electron-lattice interaction
provides an additional driving force to stabilize the paired
state relative to that of separated polarons. Thus, large
bipolaron formation is expected when ep&&1 and e . This
situation prevails in the insulating parents of supercon-
ducting oxides [61.

First consider a large polaron. Within the adiabatic
approach the Hamiltonian is 0=T,, + v, .+E,1, where T, ,

is the kinetic energy associated with atomic motions, V,, is
the potential energy due to direct interaction between
atoms, and E,~ is the electronic energy of the self-trapped
carrier. In a continuum the electronic energy is

h' Vv(r) '
dr + ~e(r) ~' duZ(r —u)A(u)

2m 4

(1)
where Z(r —u) describes the electron-lattice interaction
between an electronic carrier at position r and atomic dis-
placements, modeled by scalar parameters, A(u), cen-
tered at positions denoted by u. Within the harmonic
approximation, the strain energy resulting from direct
interatomic interactions is V,,

=—Sfdu d, (u)/2, where
S—=k/a, the stiA'ness constant k per unit volume.

ln the customary manner e(u)=—V,, +E,~
is expanded

about its minimum value. The first and second deriva-
tives of e(u) with respect to variations of A(u) are

and

|la(u)
=Sa(u) + dr

~
e(r)

~
'Z(r —u), (2)

=S8(u —u') +„dr, Z(r —u)
rl's(u), +

" t)(e(r))'

—=S8(u —u') +aS (u, u') .

ln obtaining these results the normalization of ~%'~
'

is

used to eliminate derivatives of the electronic wave func-
tion with respect to A(u) from Eq. (2). The carrier-
induced shifts of the equilibrium dilations from d, (u) =0
to h(u) =Ap(u) are determined by setting the right-hand
side of Eq. (2) to zero. When atoms are constrained to
these equilibrium positions, the energy of the system is

Ep = —Sfdu4p(u)]'/2.
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Following Ref. [5] the adiabatic procedure can be
readily generalized to obtain the adiabatic energy min-

imum for a system of n large bipolarons that each has a
binding energy of Ebp..

Ep= —nEb~+ 2 drp(r) ds[p(r+s) —8(s)]en(s).

(4)
Here p(r) is the density of bipolarons centered at the po-
sition r and the direct interactions are described by

rier-induced change of the stiffness tensor of Eq. (3) is

expressed in terms of matrix elements of the electron-
lattice coupling function between the ground and excited
states of the self-trapped carriers. For the two carriers of
a large bipolaron,

AS(u, u') = —4g g &g, OlZ(r u—)lg, n&

I n&0

x &g, n lZ(r —u') lg, O&/(E Ep) .

en(s) —= (2e) /ep[lsl+R]+C El~exp( —C2lsl/R), (5)
Here the nth electronic energy level and the state of the
polaron centered at g are denoted by E„and lg, n&, re-
spectively. Electronic overlap between self-trapped car-
riers of different bipolarons is ignored. Expanding the
electron-lattice interaction function about its value at the
bipolaron's centroid: Z(r —u) = tlz(g —u)/Bg. (r —g),
the tensor of Eq. (6) becomes

where Ci and C2 are numerical constants. The first of
the terms in Eq. (5) represents the Coulomb interactions
between bipolarons of radius R. Since the carriers adia-
batically follow the atomic motion, the Coulomb interac-
tions between bipolarons are reduced by the static dielec-
tric constant. At sufficiently large separations, lsl)) R,
this Coulomb repulsion approaches that of static charge
point charges separated by s.

The second term in the square brackets describes the
repulsion between large bipolarons that occurs when the
wave functions of the self-trapped carriers of different
large bipolarons overlap with one another. This repulsion
occurs because the Pauli principle forces two of the four
electronic carriers of two bipolarons into excited electron-
ic states of the self-trapping potential well as two bipola-
rons are brought together [7]. This short-range repulsion
occ
Th
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B
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AS (u, u') = —4g PI [tlz (g —u )/8g] [8Z (g —u')/8g],

where the polarizability of a self-trapped carrier is de-
fined by

P,=- Z &g, OI(r —g) lg, n&&g, nl(r —g) lg, O&/(~ ~p) .
n~0

urs for large bipolarons but not for large polarons. For equivalent sites, PI=P. This polarizability arises
us, even though large polarons may find it energetical- from the redistribution of the self-trapped charge among
avorable to merge into large bipolarons, large bipola- different atomic sites enveloped by the bipolaron. A large
s should not coalesce into grander polarons such as bipolaron's polarizability is essentially the square of the
dpolarons. Equation (5) shows that the direct in- radius of the self-trapped carrier divided by its binding
ctions between large bipolarons are repulsive. energy, E,t = 3E~ for a large bipolaron.
ipolarons' effects on atomic vibrations are now con- The potential energy arising from displacing atoms
red. Treating the change of the carriers' wave func- from the equilibrium values they assume when bipolarons

with atomic displacements perturbatively, the car- form, d(u)—=A(u) —Ap(u), is VL=Sfdud (u)/2+ V~i,
where

V,= —2PQ „du du'[8Z(g —u)/8g] [aZ(g —u')/ag]d(u)d(u')
8

= —
2PQ „du„du'[aZ(g —u)/aul [aZ(g —u')/au]d(u)1(u')

du J du'Z(g —u)z(g —u') [Bd(u)/Bu]. [Bd(u')/Bu'],

where the third equality follows an integration by parts. The polarizability of large-polaronic carriers reduces the
stiffnesses of atomic vibrations through Vpp|.

Expressing the atomic displacement parameters, d(u), in terms of operators that respectively create and destroy pho-
nons of wave vector q and frequency rpp of the lattice prior to consideration of carrier-induced stiffness changes, (bp)
and bq.

V~i = —PN 'g +8(q)8(q') cos8~ ~ [[p~ ~b~(b~ )*+p p+~ (b~)*b~ ] —
[p~+~ b~bs+ p p-~ (bp)*(b~ )*]], (lo)

where cos8& & is the cosine of the angle between q and q', and

p~ =g e'" s =~"dr e'"'g b'(r —g ) =g~ dr e'"'p(r)
8
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is the Fourier transform of the carrier density, p(r). For the long-range electron-lattice interaction with optic phonons
whose dominance is required for large-bipolaron formation, B(q)—:2(Pe hcoqx/a3) 'i [5]. Since P = R /(Pe /R) for a
large bipolaron s self-trapped carriers, PB (q) =4zhro~(R/a) . Consistent with the approximation employed in Eq.
(7), the summations over q and q' are only to be carried out up to a maximum value = 1/R.

Treating V~I as a perturbation on the carrier-free vibrational system, the carrier-related energy through second order
is found to be

ET = —n(Ebp+Ebpi+Ebp2)+ —,
'

„I dr p(r)J" ds[p(r+s) —6'(s)] [sx (s) —sg (s) l,

Ebpi =2P!V '+8 (q)[JVq+ j],
Ebp2= PJV —+8 (q)QB (q')cos OqqF(q, q'),

sz(s)=2P N +8 (q)QB (q')cos Oqq
q'

(i 3)

(i 4)

x cos [(q —q') s]F(q, q'),

and
(is)

1+~q, -q
F(q, q') =—„(

'

)

+2N
1+6''

h(ro +Cd ')
1
—

Bqq

t1(ro —ru )

0.10-

where Eb~i and Eb&2 are the first and second order correc-
!

tions to the bipolaron's single-particle energy. Phonon-
mediated interactions between the large bipolarons that
enter in second order are contained in the attractive ener-

gy, sz(s). Explicitly,

~here JVq is the phonon population of the qth vibrational
mode of the carrier-free system.

The ground state of the system can be a bipolaronic
liquid if the attractive interbipolaron interactions dom-
inate the repulsive interactions over some range of sepa-
rations. The phonon-mediated attraction, s~(s), is now

investigated. To consider the ground state, take 1Vq=0
for all q. Then, ignoring the dispersion of the optic pho-
non modes, cuq=ru, evaluation of Eq. (15) yields s~(s)
= hro(R/s) for s/R)) 1, where a numerical factor
comparable to unity is ignored.

Since the attractive interaction falls oA with separation
as a power law, it will dominate the short-range repulsive

energy at sufficiently large separations. Such a potential
well is illustrated in Fig. 1, where the sum of an exponen-
tial repulsion and a (R/s) attraction is plotted. Thus, if
the static dielectric constant is large enough to suppress
the Coulomb repulsion sufficiently, large bipolarons can
condense into a liquid.

Further condensation of the large bipolarons into a
solid is also possible. However, complete crystallization
~ould entail forming a supercrystalline configuration that
is commensurate with the underlying lattice. This may
occur when carriers induce a structural transformation to

0.05— 0.025-

0.020-

0.00—

I

4)
~ -0.05-

0.015-l5

I-
R

0.010-

0.005-

NO

POLARONS

-0.10—
0.000-

0.0 0.1

I

0.2
bc

lcm
I

0.3
I

0.4

-0.15—

I

3

s/R

FIG. I. The interaction energy between two large bipolarons
of radius R separated by the distance s.

FIG. 2. Large bipolarons will be bound into a liquid only

within a limited range of global carrier concentrations, r, and

temperature, T. The constants b and a characterize the van der
Waals liquid. Above the solid line the liquid of large bipola-
rons has completely evaporated to a gas of large bipolarons.
When r )r, the carrier density is too great to permit bipola-
ron formation.
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a tetragonal insulating state (with a square geometry in

the CuOz layers) when there is —,
' hole per unit cell in

doped LazCu04 [8,9). This result is consistent with

forming a state that is commensurate with the lattice
geometry in which there is one bipolaron for each four-
by-four superlattice unit, I/8 =2/4 .

To address the condensation of large bipolarons into a
liquid, the large-bipolaronic liquid is modeled as a van
der Waals liquid. The short-range repulsion constant, b,
is comparable to the volume of the large bipolaron. The
longer-range attraction constant, usually denoted as a, is

roughly the product of the depth of the attractive poten-
tial —Aco and the volume over which the interaction is
attractive. The gas of large bipolarons is described as a
perfect gas. The resulting phase diagram is presented in

Fig. 2, where a/b is » hto.
At low enough temperatures, large bipolarons condense

into a liquid. As the global carrier density (the number
of carriers per sample volume), c, is increased, the volume
of large-bipolaron liquid increases. However, if "over-
doping" produces too many carriers, c )c, the atomic
displacements responsible for the self-trapping of carriers
interfere enough with one another to destabilize the large
bipolarons so that large bipolarons do not form. Kith ris-
ing temperature the liquid will evaporate. The condensa-
tion temperature falls as the global carrier density is re-
duced.

In oxide superconductors and their insulating parents
carrier-induced photoabsorptions consistent with the pho-
toionization of self-trapped carriers are observed. Car-
rier-induced alterations of atomic motions also occur.
Recently, it has been argued from such empirical evi-
dence that superconductivity in oxides is associated with
a "distinguishable thermodynamic state" in which mul-
tisite polaronic carriers form a liquid [10]. Having super-
conductivity being a property of such a liquid phase
would also explain the tendency of T, in cuprates to be
nearly independent of the doping level within the restrict-
ed doping region in which superconductivity occurs [11].
In this work, I describe a mechanism for the condensation
of large (multisite) bipolarons to a liquid state. This
mechanism is inapplicable for small (single-site) bipola-
rons since the carriers' restriction to a single site con-
strains its intersite polarizability, P, to vanish.

In summary, the self-trapped carriers of a large (mul-
tisite) bipolaron redistribute themselves among sites of
their molecular orbitals as the self-trapping potential well

is altered by changing atomic positions. Through their
polarizability, large bipolarons interact with atomic vi-

brations, thereby reducing the phonon frequencies. This
lowering of the zero-point energy depends on the spatial
distribution of large bipolarons. This effect produces a
phonon-mediated attraction between large bipolarons.
The attraction is a dynamic quantum-mechanical effect,
proportional to (and comparable to) @to.

The bipolaron polarizability, which is responsible for
these effects, decreases as a bipolarons' radius is reduced.
Since the radius of a large bipolaron varies inversely with

the bipolaron's binding energy, the attractive forces de-
crease as the electron-lattice interaction strength is in-

creased. Thus, for liquid formation to occur, the elec-
tron-lattice interaction must be large enough so that (adi-
abatic) large bipolarons form, but not so large as to
suppress the attractive interaction.

This work was performed under the auspices of the
U.S. Department of Energy and was funded in part by
the Office of Basis Energy Sciences, Division of Materials
Sciences under Contract No. DE-AC04-76DP00789.

[I] Y. Toyozawa, Prog. Theor. Phys. 26, 29 (1961).
[2] D. Emin and T. Holstein, Phys. Rev. Lett. 36, 323

(1976).
[3] H. Frolich, Adv. Phys. 3, 325 (1954).
[4] D. Emin, Adv. Phys. 22, 57 (1973).
[5] D. Emin, Phys. Rev. Lett. 62, 1544 (1989); D. Emin and

M. S. Hillery, Phys. Rev. B 39, 6575 (1989).
[6] D. Reagor, E. Ahrens, S.-W. Cheong, A. Migliori, and Z.

Fisk, Phys. Rev. Lett. 64, 2048 (1989).
[7] D. Emin, in Physics of High Temperature Superconduc

tivity, edited by S. Maekawa and M. Sato (Springer-
Verlag, Heidelberg, 1992), pp. 125-135; in Physics and
Materials Science of High Temperature Superconduc
tors-lI, edited by R. Kossowsky, B. Raveau, D. Wohlle-
ben, and S. Patapis (Kluwer, Dordrecht, The Nether-
lands, 1992), pp. 27-52.

[8] Y. Maeno, N. Kakehi, M. Kato, and T. Fujita, Phys. Rev.
B 44, 7753 (1991).

[9] H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava, J.
J. Krajewski, and W. F. Peck, Jr. , Phys. Rev. Lett. 69,
2975 (1992).

[10] J. B. Goodenough, J.-S. Zhou, and J. Chan, Phys. Rev. B
47, 5275 (1993).

[I I] H. Zhang and H. Sato, Phys. Rev. Lett. 70, 1697 (1993).

1055


