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Semiclassical Solution of One Dimensional Model of Kondo insulator
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The model of a Kondo chain with an M-fold degenerate band of conduction electrons of spin
1/2 at half filling interacting with localized spins S is studied. It is shown that in the continuous
limit the spectrum of spin excitations is described by the O(3) nonlinear sigma model with the
topological term with 0 = n'(2S —M). Thus for ~M —2S~ =(even) the system is an insulator and
single electron excitations at low energies are massive spin polarons. Otherwise the density of states
has a pseudogap and vanishes only at the Fermi level.

PACS numbers: 71.28.+d, 75.10,Jm, 75.25.+z

The problem of coexistence of delocalized and local-
ized electrons in crystals remains one of the biggest un-

solved problems in condensed matter physics. It is still
unclear how conduction and localized electrons reconcile
with each other when the local moments are arranged
regularly (Kondo lattice problem). Empirically Kondo
lattices resemble metals with very small Fermi energies
of order of several degrees. It is widely believed that
conduction and localized electrons in Kondo lattices hy-
bridize at low temperatures to create a single narrow
band. It is not clear, however, how this hybridization de-
velops. In particular, it is not clear whether the localized
electrons contribute to the volume of Fermi sea or not.
If the answer is positive, a system with one conduction
electron and one spin per unit cell must be an insula-
tor. The available experimental data apparently support
this point of view: all compounds with an odd number
of conduction electrons per local moment are insulators

[1] (Kondo insulators). At low temperatures they behave
as semiconductors with very small gapa of the order of
several degrees. The marked exception is FeSi where the
value of the gap is estimated as 700 K [2]. The con-
servative approach to Kondo insulators would be to cal-
culate their band structure treating the on-site Coulomb
repulsion U as a perturbation. The advantage of this
approach is that it gives an insulating state already in

the zeroth order in U. The disadvantages are that it
contradicts the principles of perturbation theory which
prescribe that the strongest interactions are taken into
account first and also does not lead to a satisfactory de-
scription of the experimental data: the band theory fails
to explain many experimental observations (see Ref. [2]
for a discussion).

In this Letter I study a one dimensional model of the
Kondo lattice at half filling. Et is shown that the insulat-

ing state forms not due to a hybridization of conduction
electrons with local moments, but as a result of strong an-

tiferromagnetic Buctuations. An interaction of electrons
with kinks of the staggered magnetization converts them
into massive spin polarons. This scenario does not re-

quire a global antiferromagnetic order, only an enhance-
ment of the staggered magnetic susceptibility. The spin
ground state remains disordered with a finite correlation
length. The recent numerical calculations of Tsunetsugu
et al. [3] and Yu and White [4] are in agreement with this

point of view, demonstrating a sharp enhancement of the
staggered susceptibility in one dimensional Kondo insu-

lators and the formation of a spin gap. This scenario can
be generalized for higher dimensions; Kondo insulators
in this case are either antiferromagnets (then they have

a true gap), or spin fiuids with a strongly enhanced stag-
gered susceptibility. In the latter case instead of a real

gap one can expect a pseudogap —a drop in the density

of states on the Fermi level.
Let us consider the following Hamiltonian describing a

Kondo chain at half filling:

M

) ~ ) ~[ 2( r+1,n, a rial& r a a r+ti~, u)

+ J(c„",cr,bc„b)S,]

The conduction electrons have spin S = 1/2 and their
band has an additional M-fold degeneracy. The value

of local spins is S. In what follows I shall use the path
integral approach. The path integral representation for

spins has been discussed in detail by many authors, in

particular in the book by Fradkin [5]. In the path integral
approach spins are treated as classical variables S = Sm
(m = 1); the corresponding Euclidean action for the
model (1) is given by

dutm„(u, )) c( Sc)mx Su, m„(„u, c))), c c) c ' —H', (c,",c;„Sm,)).

The first term is the spin Berry phase responsible for the correct quantization of local spins. The integrand in

the Berry phase is a total derivative and the integral depends only on the value of m on the boundary, i.e. , on

m(u = 0, 7.) = m(r), m(u = 1, r) = (1,0, 0). The introduction of the additional dummy variable u is the price one

has to pay for the fact that the Berry phase cannot be written as a local functional of m„(r).
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provided JM « 1. I suggest the following decomposition
of variables:

(4)

I shall follow the semiclassical approach assuming that
all fields can be separated into fast and slow components.
Then the fast components will be integrated out and as
a result we shall obtain an efFective action for the slow
ones. This approach is self-consistent if the obtained cor- c = 'i PR(x) + (—i)"O'I (x) ~ (3)
relation length for spins is much larger then the lattice
spacing. In ordinary antiferromagnets this requirement where IkIa « 1 is the quickly varying ferromagnetic com-

is fulfilled only for large spin, " S » 1. As we shall see ponent of the local magnetization. Substituting Eqs. (3)
later, the Kondo chain is semiclassical even for S = 1/2 into Eq. (2) and keeping only nonoscillatory terms, we

I get

I = iS(k [n x 8 n]) + Q~(ip„B„I+JS[o n(x)]/1 —azk(x)z)g~ +2zS x (top term),

where
I

2

(top term) = — d~dxe» (n [g„n x B,n]) (5)

is the topological term first derived by Haldane [6]. As
far as the nonelectronic part of the action is concerned,
the present derivation repeats the one of Ref. [5]. The
interaction of ferromagnetic fluctuations with electronic
currents has been omitted; it can be shown that at small
JM (( 1 it gives insignificant corrections.

The fermionic determinant is calculated later [see Eqs.
(24) and (25)]. Besides the trivial static part it contains
the topological term, but with —M instead of 2S. This
is what one should expect: this change reflects the fact
that local spins couple with conduction electrons to give
the total spin S—M/2. Substituting expression (25) into
Eq. (4), we get

L = iS(k [n x 8 n]) + —[(8 n) + (8 n) ]

+ (JS) ln (k)z+ 7r(2S —M) x (top term).

Integrating over k, we get

A = — d~dx v (8 n) + (B~n)
27t

+7r(2S —M) x (top term), (7)

2 1 + JzMz ln(1/ JS) (8)

After the rescaling of the coordinates v7 = xo, x = xi we
get the action of the O(3) nonlinear sigma model with
the dimensionless coupling constant

g = —=
M2 2' 2+ J2 1n(1/ JS)

This constant is small at JM (( 1 which justifies the
entire semiclassical approach. At IM —2SI = (even) one
can omit the topological term. Then the model Eq. (7) is
the ordinary O(3) nonlinear sigma model whose ground
state is disordered and the spectral gap is given by [7,8]

6 = Jg 'exp[ —2z/g]. (10)

The correlation length ( Ja/6 » a. If IM —2SI =
(odd) the topological term is essential [6]. The model be-
comes critical and the correlation functions of staggered
magnetization have a power law decay. The specific heat
is linear at small temperatures without requiring, how-

ever, the single electron density of states to be constant
at the Fermi level.

Now let us evaluate the fermionic determinant

D[g] = MTrln[ i p„8„
+ (1+its)mg/2+ (1 —its)mgt/2],

(11)
where g is a matrix from SU(N) group and m is some
constant energy scale. In the context of the model (1)
m = JS and g = (crn). Therefore in the original problem
N = 2, but it is worth doing the calculation for general
N. I shall study the expansion of the determinant (11)
in terms of m iVg. The first terms of this expansion are
independent of m and survive even at m ~ oo. I claim
that the gradient expansion contains a Berry phase. To
prove this point I take a route which may seem exotic,
but I do not know any better way to get the right answer.
The basic idea is that the determinant (11)coincides with
an effective action for gapless excitations of the chiral
Gross-Neveu model with the U(M) x SU(N) symmetry.
For this particular model there is an alternative way to
calculate this effective action; this way leads to Eq. (24).
The above mentioned Gross-Neveu model is described by
the following action:

C
A = d x i@~ ~P„O&g~ ~ ——F/0, ~gb ~ 'fIb Pga, P

—ga ~ Qgb o. 'fIb PP57j~ J9 . 12

The Greek indices belong to the group SU(M) and the Latin ones to SU(N). Let us show that low-lying excitations
of this model are described by the actions (11) and (24) which are thus equivalent to each other.

First, let us show that the low-lying excitations of the model (12) are indeed described by the efFective action (11).
For this purpose let us separate massive excitations and show that the remaining action is given by (11). I do it with
an auxiliary field Q b which decouples the interaction term in (12) via the Hubbard-Stratonovich transformation.
Integrating over the fermions we obtain the partition function for the tensor Q b
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Z = DQ~BQ exp~ — dexL),

(13)

expression for this action in the form of Eq. (11). Using
the identity 2' ~2 = 1/2 —Piq, where Piq is the permu-
tation operator, we can rewrite the interaction term in

(12) in terms of fermionic currents:m = A exp[ —vr/Mc]. (14)

1
L = —TrQt Q —M Tr ln[ip„O„+ (1 + ip5) Q/2 + (1 —i') Qt/2].

The action (13) has a saddle point with respect to Q~Q
and thus fluctuations of det Q are massive. This can be
done in the standard fashion, the resulting mass being

Therefore for slowly varying fields Q one can substitute
Q b in the Tr ln in Eq. (13) by mg b where g is an SU(N)
matrix. As a result we get (11) as the effective action for
those excitations of the model (12) whose energies are
« m, where m is given by Eq. (14). Thus the first goal
is accomplished.

The second goal is to find an alternative way to cal-
culate the effective action for the massless modes of the
model (12). This way exists and it will give us an explicit

+U{1)+ +SU{1V) + +SU{M)

d2x(ill p„O„q + 4cJ„"J"~).

JA (- A
) i 15)

where r" are matrices —generators of the SU(M) group.
The two models (12) and (15) differ by a term containing
a diagonal scattering. This term does not renormalize
and therefore is not important. Now I apply to the model
(15) the non-Abelian bosonization procedure suggested
by Witten [9] (see also [10]). Namely, let us rewrite its
Hamiltonian in the Sugawara form:

HU(i) = 7r dx[: JR(x)JR(x): +:JL(x)JI,(x):],

27t
HsUpr) =

N + M ). dx[: JR(x)JR(x):
&=a

GM
= ) . d*( (: g" (*)g'(*)

A=1
where the chiral currents for the group SU(N) are

JR 1R ~ggtggbrIR ba', JL = '9L (gdetggb7/L, bgg) (20)

where t' are the generators of the SU(N) (spin) group
and gR, gL, are right and left components of the Dirac
spinor rl. J and J" are the U(1) and the SU(M) (flavor)
currents, the latter defined as in Eq. (15). G~ = Ns —1
and GM = M —1 are the total number of generators of
the su(N) and the su(M) algebras. Currents from differ-
ent algebras commute. Therefore the Hamiltonian (16) is
a sum of three mutually commuting operators. Now no-
tice that the interaction term transits from Eq. (12) into
Eq. (19) and thus does not affect the spectra of SU(M)
singlets. It is well known that the spectrum of HsU{M~

XM
AU{g) ——

8x

+:Ji.(x)Ji, (x):]

: +: ge (x)ge (x):) + 4e: dx(x) gr'(x):) (19)

is gapful for the given sign of the coupling constant (see,
for example, Ref. [11]).From the previous discussion we
can conclude that the gapful excitations correspond to
fluctuations of det Q. Therefore the spectrum below the
gap m described by the action (ll) is also described by
the rest of the Hamiltonian (16), in other words by HUiil
and HsU(m) given by Eqs. (17) and (18). The Hamilto-
nian (18) is the Hamiltonian of the Wess-Zumino-Witten
model on the group SU(N). Its spectrum is the subsector
of the free fermionic spectrum generated by the SU(N)
current operators. The model is conformally invariant
and exactly solvable [12,13]. In order to extract from
these results an expression for the determinant (ll), I
rewrite the model in the I,agrange representation [9—13]:

d~x(o)„(Ib)'. (21)

~SU{W) =

d x Tr(B„QtB„Q).

d x~ Tr(Beg Beg) + d(e e,Tx(g g gg glgg g g)): ,'22)
( 16gr " " 24vr

where g is a matrix from the SU(N) group (gag = I, detg = 1). The second term on the right-hand side of Eq. (22)
is called the Wess-Zumino term. This term is topological; its actual value (modulus 27(iN) depends on the boundary
values of g(x, ( = 0) = g(x) [g(x, ( = 1) = 0].

Now let us compare Eq. (22) with Eq. (11). The part of Eq. (22) which does not contain the Wess-Zumino term
represents the first term in the gradient expansion of Tr ln term in Eq. (13). Indeed, at small momenta ~p~ && m this
term is equal to
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Now let us write down the Q field as follows:

Q(x) = mg(x)e™~*),
where g belongs to the SU(N) group. Substituting this
expression into Eq. (23) we reproduce Eq. (21) and the
first term of Eq. (22). It is not entirely unexpected that
the naive gradient expansion, being an adiabatic approx-
imation, misses the important Wess-Zumino term. This
term is a Berry phase and thus requires special care.
Thus we conclude that the determinant (11) is equal to

Mm'
D[g) = AsUlivl [g] + ln(A/m) + O(m ), (24)

where AsUiiv) [g] is given by Eq. (22) and the second term
represents the static part of the determinant. For the
particular case g = (8 n) the Wess-Zumino term becomes
the topological term (5) and we get

AsUlzi [(on)] = —(B„n) —z'M(top term). (25)
M

I shall discuss the excitation spectrum only for M = 1.
In this case the original model has a combined symmetry
SU(2) x SU(2) [the additional SU(2) symmetry arises as a
particle-hole symmetry at half filling]; excitations carry
two quantum numbers —spin S and an isotopic spin I.
We have established that spin excitations, i.e. , excita-
tions with I = 0, are described by the nonlinear sigma
model with the topological term (7). The leading con-
tributions to the low energy dynamics come from an-

tiferromagnetic fluctuations. It agrees with the results
of numerical calculations [3,4]. The corresponding en-

ergy scale (10) formally resembles the expression for the
Kondo temperature. m( J) is larger, however, due to the
presence of the large logarithm. Therefore at small JM
the RKKY interaction always plays a stronger role than
the Kondo screening —it also agrees with the conclusions
of Refs. [3,4]. The topological term can be omitted if
[M —2S[ = (even); in particular, it cancels for the most
physical case S = 1/2, M = 1. The low-lying magnetic
excitations are in this case massive triplets, as it is for
the O(3) nonlinear sigma model [7,8]. This picture is
in qualitative agreement with the strong coupling limit
of the model (1). Indeed, for J » 1 the ground state
of the Kondo chain consists of local singlets. Excited
states are triplets separated by the gap J from the
ground state. That is what one can expect from a one
dimensional model: usually in 1D there is no disconti-
nuity between strong and weak coupling, which in the
present case is supported by the numerical calculations
of Ref. [3] showing a smooth crossover between J » 1

and J &( 1.
Fermionic excitations carry quantum numbers S =

1/2, I = 1/2. It follows from (4) that the fermionic fields
live in a slowly fiuctuating field JS(urn(x, r)). For con-
stant n the electrons would have a spectral gap JS, but
since n fluctuates, there are states in the gap. These are
bound states of electrons with solitons of the unit vector
field n. Formation of bound states is a typical feature
of relativistic field theories (see, for example, Ref. [14)).

Following Ref. [14] let us consider a slowly varying static
configuration n(x) such that n( —oo) is antiparallel to the
z axis and n(oo) is parallel to it. Then a straightforward
calculation shows that there is an electronic bound state
on this domain wall whose energy is zero and wave func-

tion is equal to

@(x) = T exp~ — dy(o' n(y)) ~4'(0).
o

(26)

Therefore the total energy of this bound state is equal to
the energy necessary to create the domain wall, which is

the gap for the spin excitations. Thus in the energy in-

terval between JS and m single electron excitations are
massive spin polarons. It is no longer the case if [M —2S[
= (odd), when the nonlinear sigma model becomes crit-
ical and belongs to the universality class of the isotropic
S = 1/2 Heisenberg chain. In the critical phase the spin
solitons do not have a fixed scale and the corresponding
bound states can have an arbitrary small energy. It is

reasonable to suggest that the single particle density of
states in this case has a pseudogap on the Fermi surface

decaying as a power law: p(~)
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