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Surface Resonance Scattering of High Energy Electrons
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A solution of equations of resonance scattering of high energy electrons is found which is alter-
native to that given by McRae [Rev. Mod. Phys. 51, 541 (1979)] and which does not assume the
existence of a surface state. It is shown that the angular dependence of the reflectivity does not follow
the Breit-signer law, and this conclusion agrees well with the result of numerical computation.
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Reflection high energy electron diffraction (RHEED)
techniques are widely used now for in situ monitoring of
molecular-beam epitaxial growth of semiconductor crys-
tals [1—3] and visualization of crystal defects [4,5]. Sev-
eral successful attempts have been made to determine
surface structure existing under the conditions of dy-
namic equilibrium in an MBE chamber [6]. Theoreti-
cal consideration of the observed angular and energy dis-
tributions of scattered electrons requires a knowledge of
the wave function of the diffraction problem as a fun-
damental feature, and in some cases this wave function
can be found numerically. However, it has recently been
admitted [7] that realistic computations are very time
consuming and the possibility of carrying out such an
analysis is remote. On the other hand, analytical results
are almost unknown in the theory of RHEED. This stems
from the fact that it is often more convenient experimen-
tally to perform observations along orientations, where
the influence of many-beam effects is strong, and also
from the fact that the surface reflectivity falls off very
rapidly with increasing glancing angle, making a weak
coupling approximation impracticable [7]. This distin-
guishes RHEED from the transmission high energy elec-
tron diffraction case (THEED), where there exists an an-

alytical two-beam solution which is found to be useful for
many applications, and constitutes a starting point for
any consideration of the diffraction contrast [8,9].

The aim of this paper is to show that an analytical
solution of the equations of RHEED is also possible, and
that this solution describes one of the most interesting
phenomena known in RHEED, namely, the resonance
scattering of high energy electrons. This phenomenon
was discovered experimentally more than 60 years ago
by Kikuchi and Nakagawa [10] as a large increase in the
intensity of the specular beam reflected from a surface
at some particular conditions of grazing incidence of the
electron beam on a crystal. This increase makes the
resonance condition very convenient for practical appli-
cations, and utilization of this condition has become a
routine technique of reflection electron microscope ob-
servation of surface defects and dynamical processes on
a surface [4,5,11].

However, the interpretation of the origin of the phe-
nomenon remains controversial. Following the ideas de-

veloped in the theory of low energy electron diffrac-
tion [12,13], some authors have attributed RHEED reso-
nance scattering to trapping of electrons by surface states
[5,7,14]. Results obtained by other authors [15—19] sug-
gest that bulk states are involved. However, it is difficult
to make a distinction between these two models numeri-
cally. Indeed, the wave function of a shallow surface state
can extend deeply into the crystal bulk, while a tightly
bound orbital belonging to a narrow band of bulk Bloch
states can be localized near the surface, and simple exam-
ination of the wave function calculated numerically can-
not be interpreted unambigiously as being for or against
the two aforementioned models. The only analytical so-
lution of the equations of the resonance scattering which
has been given so far is that of McRae [12]. His result is
based on the concept of the existence of a nondegenerate
surface state, which is supposed to be well separated in
energy from all other states. In our paper we demonstrate
for the first time that there exists an alternative solution
of the equations of resonance difFraction [i.e. , Eqs. (25a)
and (25b) from Ref. [12]],and that this solution can be
obtained without using the concept of a surface state.

We consider a model in which the resonance scattering
involves a band of bulk states tightly bound in the po-
tentials of adjacent planes parallel to the surface of the
crystal. All the parameters characterizing this band fol-
low from the first-principles solution of the Schrodinger
equation for the bulk crystal. For this model we prove
the formal equivalence of the equations of resonance scat-
tering to a problem of scattering of an electron by a one-
dimensional set of non-Hermitian 6-function potentials.
For the latter an exact analytical treatment is available,
and therefore, by analogy, so is a solution for the equa-
tions of resonance difFraction, as we now proceed to show.

Following [12],we expand the potential U(r) = U'(r)+
iU" (r) of the crystal as a two-dimensional Fourier series,
and the wave function i11(r) of the high energy electron,
as a two-dimensional Bloch function, viz. ,

U(r) = ) Ug (z)exp(ig' R),
gl

4'(r) = ) 4s (z) exp[i(k~~ + g') . R], (1)

where g' denotes a two-dimensional reciprocal lattice vec-
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localized orbitals,

@ (z) =) c" ~ ('»

where the coefficients ci„satisfy the system of algebraic equations,

hzKz . m, .r
a,„=A —tp —M —i A +i-

2m 52~ 2
exp(iKnd) —i A ) exp(ird]n —&])o,i

t=p
where

A = dz'P„'(z') Us(z') exp(irc[z' —nd])

and

h~ dz h~rcz

,4(z) + U ) b(z —nd)C (z) = 4'(z). (7)

To illustrate this, we transform (7) into the integral representation,

4(z) = Jexp(izz) —i U dz'exp(ilc~z —z'[) ) b(z' —nd)@(z'),
hz~

n=p

where J denotes the amplitude of the incoming wave. For z = nd this equation by the choice of parameters J = U/A
aiid

M = i z
— dz'dz" P„'(z')Us (z') exp(iK

~

z' —z"
~) U s (z")P„(z").

hz~

The magnitude of A is proportional to the probability amplitude of capture of an electron from the propagating wave
exp(i~z) into the localized state P„(z), while M is the probability amplitude of release of an electron from state P„(z)
with its subsequent capture by the same state via the intermediate propagating state exp(iK~z' —z"~). The scale of
attenuation of the kernel of this equation [i.e. , the term exp(ilcd]n —l])] is inversely proportional to the imaginary
part of the wave vector, which is assumed to satisfy the condition (Imz) )) d.

To solve (6) we notice that there exists a purely formal similarity between (6) and the one-dimensional Schrodinger
equation of the form

- —1
hzKsz . m, .r—ep —M —i A +i-

2m h2K 2
(8)

becomes identical with (6). The solution of Eq. (7) itself can be found by application of the transfer-matrix technique
[22]. Defining

. m
i„z U i A

hzrK
hzK~ .r'

$2~ —ep —M+ i-
2m 2

and t = 1 + r (r and t are the reflection and transmission coefficients of a single b-function potential), we obtain the
resonance part of the coefficient of reflection of high energy electrons from a surface of the crystal as

{[r+ exp( —i)cd)] —t ) ~ —{[r—exp( —itcd)] —t ) ~
Rp'" ——exp( —i~d)

~ 2 2 1 2 ~ 2 2 1/2
' (10)

{[r+exp( —ied)] —t ) ~ + {[r—exp( —ied)] —t )

(9)

The coefFicients ci„are as follows:

hzKz . m, .rn„=A —ep —M —i A +i
2m hK 2

1+Bp —1—(res) exp( —i~dn).

The quantities (9) and (11),considered as functions of h~K~/2m, exhibit a clear resonance behavior, the resonance
width of (9) being equal to I'&~& ——I'+ 2 Im( —M). Virtual transitions result in a shift of the resonance from its initial

position at ep towards h Kz/2m = op + Re(M). The wave function of resonance difFraction belongs to the continuum

of Bloch states and can be characterized by the quasimomentum hq = —hrc —i(h/d) in[{1/t)(l —{r/+" ))]. The
behavior revealed by the coefficient of reflection of high energy electrons from a surface of the crystal is identical with
the behavior of the coefflcient of reflection of a particle from an array of non-Hermitian 6-function potentials, the
magnitude of each potential being given by expression (8). This magnitude explicitly depends on the orientation of
the electron beam via the parameter hzKsz/2m, and at the exact resonance position the effective potential U becomes
a purely imaginary quantity. This distinguishes the surface resonance diKraction of high energy electrons from ordi-
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FIG. 2. Absolute value of the surface reflectivity ]Re[ plot-
ted as a function of azimuth rl for glancing angle ( = 58.6
mrad and energy of electrons E = 100 keV. The solid curve
has been obtained by numerical integration of Eqs. (2). The
dotted curve hss been evaluated using formula (10). rl = 0
corresponds to the [112] azimuth in the (111)surface.

15

nary Bragg scattering. It is important to emphasize that
behavior of the reflectivity (10) does not follow the stan-
dard Breit-Wigner law. There exists a rather compli-
cated relation between r from (9), which indeed has the
Breit-Wigner form, and the resulting expression for the
reflectivity (10). The origin of the violation of the Breit-
Wigner resonance law results from the fact that many
states having nearly the same energy eo participate in
the process of scattering, and the standard requirement
that the localized state must be well separated in energy
space from all other states (as is assumed to be the case
for scattering via a surface state [12]) is not satisfied.

To evaluate the accuracy of our approach, we com-
pare our analytical solution with the results of nu-
merical integration of (2). To solve (2) numerically,
we used the 'R-matrix method [17], where R is so de-
fined to relate the components of the wave function and
their derivatives.

Alternatively, the wave functions of localized states
P„(z) as well as their inelastic widths have been de-
termined independently from solving the bulk 31-beam
Bloch wave problem (this needs to be performed only
once for a particular value of (). The "potential" con-
tribution to the reflectivity has been calculated by nu-
merical solution of the one-dimensional diffraction prob-
lem [23]. Figure 2 shows the azimuthal dependence of
the absolute value of the reflectivity ]Rp(rl)] (full curve)
obtained by numerical integration of (2) and the corre-

sponding dependence of [Ro"' (ri)++ [
(dotted curve)

evaluated from expression (10), where rl is the angle of
azimuth and rl = 0 corresponds to the [112] direction in
the (111) surface The cur.ves in Fig. 2 exhibit a strong
increase in reflectivity in the vicinity of the resonance,
and in this region there is excellent agreement between
the results of the analytical treatment (10) and the exact
numerical solution.
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