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A generalization of self-guided beams (spatial solitons) is discussed. Each beam is characterized by
an axially uniform intensity profile whose polarization state changes with propagation. The soliton
therefore has internal dynamics. It is composed of two orthogonally polarized modes of the linear
waveguide induced by the dynamic soliton which, in general, do not exist as solitons independently. Our
insight and exact analytical results for the threshold nonlinearity are found from the elementary physics
of linear optical waveguides via a nonlinear self-consistency procedure.

PACS numbers: 42.50.Rh, 03.40.Kf

There is growing interest in self-guided beams (spatial
solitons), in part because of the possibility of guiding and
manipulating light with light itself [1-7). This motivates
us to search for new spatial solitons by juggling the physi-
cal properties of light, thus introducing new degrees of
freedom. Our present study considers the physics under-
lying the expanded class of spatial solitons that exist
when the soliton is composed of two orthogonally polar-
ized beams. Here, we accordingly build upon and extend
earlier important studies [8-10].

In particular, we discuss a general class of one- and
two-dimensional spatial solitons propagating in a homo-
geneous isotropic medium whose (scalar) refractive index
has an arbitrary dependence on intensity. As with classi-
cal solitons, their intensity profile remains axially uniform
but, in addition, their polarization state now changes con-
tinuously with propagation. We refer to this new class of
self-guided waves as “dynamic solitons” because of their
internal field dynamics. Dynamic solitons can have an
arbitrary number of intensity peaks and thus exhibit nov-
el intensity profiles. Their common salient property is
that they are composed of two orthogonal beams, neither
of which is, in general, a soliton on its own. Each beam
is, however, a mode of the (axially uniform) linear optical
waveguide induced by the dynamic soliton.

An important aspect of this paper is the conceptual
presentation of the underlying physical principles in-
volved. In particular, both our insight and our exact
analytical results are derived directly from linear optical
waveguide theory via a straightforward self-consistency
procedure, without the need to solve a nonlinear differ-
ential equation. The logic is as follows. Classical solitons
are the fundamental modes of the linear optical
waveguide they induce [1,11]. By inverting this self-
consistency relation, we infer that the fundamental mode
of a linear optical waveguide is the soliton of some non-
linear medium which can be found via an elementary in-
version process, as is fully discussed elsewhere [12].

Our purpose here is to generalize the inversion pro-
cedure to include dynamic solitons. These are composed
of more than one beam, each of which is a mode of the

pressed as E(x,y,z)=aE,+bEy;+cE...., where E,,
Ey,E. ... are the respective complex vector modal fields
and a,b,c ... are their associated modal amplitudes. If
we now impose the condition that the soliton intensity,
I1=|E|? remains axially uniform, the expansion is re-
stricted to only two modes, “a” and “b” say, if we
discount accidental degeneracies. Furthermore, these
modes must obey the complex orthogonality relation
E,-Ey =0. It is, therefore, apparent that the polariza-
tion state changes continuously as the dynamic soliton
propagates because the two modes have distinct propaga-
tion constants and thus beat.

In summary, the vector field of a dynamic soliton is
composed of two modes, a and b, of the linear waveguide
characterized by n2(I) and has the form

E(x,y,z) =a¥,(x,y)explif,z)é,
+bW¥,(x,y) exp(ifpz)ép , (1)

where a,b are (real) amplitude coefficients, ¥,,¥; are
(real) modal field distributions, B,,B, are (real) modal
propagation constants, and €,,€, are (complex) unit vec-
tors representing an arbitrary polarization state. The po-
larization unit vectors obey the complex orthogonality re-
lation

é, éf =0, 2)

such that the soliton intensity profile remains axially uni-
form:

I1(x,y)=|E(x,y.2)|?=a*¥2(x,p)+b*¥}(x,y). (3)

The simplest nonlinear medium for demonstrating the
physics of dynamic solitons is one without intrinsic
birefringence [13]. In this case, the refractive index,
n2(I), is a scalar quantity and the nonlinear induced
waveguide is isotropic. It is well known [14] that the
modes of such a waveguide are solutions of the scalar
wave equation (provided the maximum and minimum re-
fractive indices are nearly equal) and that €, and €, are
arbitrary, apart from satisfying Eq. (2). Thus,

24,22 — Q2 = .
(axially uniform) linear optical waveguide induced by the V& 2n 2 e )1 =Bl wa(x.y) =0, (4a)
dynamic soliton. The soliton field E is therefore ex- Vi k221 (x,p)] — BB, (x,p) =0, (4b)
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where V? denotes the transverse Laplacian and k =2n/A
is the free-space wave number. We note that the physics
of dynamic solitons in a medium exhibiting nonlinear in-
duced birefringence is conceptually the same as that de-
scribed here [15].

It remains for us to give specific examples of dynamic
solitons which normally requires solving Eq. (4). For the
special case of a Kerr-law medium, Eq. (4) is identical to
a set of equations derived in a different physical context
[8] for which exact analytical solutions have been found.
While this establishes the existence of dynamic solitons in
Kerr material, it does not provide an elegant example for
conveying the physical principles involved. The ideal ex-
ample in this regard, and one in the spirit of our intuitive
presentation, directly capitalizes on the fact that a field
composed of two modes of a linear optical waveguide is
the dynamic soliton of some nonlinear medium. Accord-
ingly, we invert [11] the modes of the familiar step-profile
optical waveguide shown in Fig. 1(a) which, in turn,
leads to solitons of the threshold nonlinearity. This repre-
sents an idealization of a sigmoidal saturating system and
is illustrated in Fig. 1(b). For a given power, there exist
two classical solitons—one stable, the other unstable
[11,16]— whose shapes change with power. Furthermore,
the soliton-induced waveguide can support an arbitrary
number of modes depending on the power. None of these
properties exist in a Kerr-law medium.

The threshold nonlinearity also supports a rich variety
of dynamic solitons. These soliton fields are composed of
two orthogonally polarized modes and can exist on either
a single step-profile waveguide, as is the case for classical
solitons, or on any composite step-profile waveguide, each
of which has identical (refractive index) profile height
but arbitrary width and arbitrary spacing. In our present
analysis, we study one-dimensional dynamic solitons
which induce a single isolated waveguide [17]. Not only
does this provide the most straightforward example but,
more importantly, it gives rise to the family of dynamic
solitons that are the most highly localized.

The modal fields within the step-profile waveguide of
Fig. 1(a) are well known to have the form [14]

cos(Ugx/p), ¢=0,2,4...,

sin(Uyx/p), ¢q=1,3,5..., )

¥, (x)= {
where ¢ =0,2,4. .. denote even modes, ¢ =1,3,5... de-
note odd modes, and U, is found by solving the eigenval-
ue equation

Ug =V coslU, — (gn/2)]. (6)

Here, the parameter V represents the dimensionless fre-
quency which fully characterizes the modal properties of
the waveguide and is defined as

V=kp~/n§—nl , @)

where p denotes the waveguide half-width and n§ —n2 is
the waveguide height. The summed power P of the a and

n(x) n(l)
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FIG. 1. (a) Step refractive index profile waveguide with a
specified maximum index no, minimum index ne, and half-
width p. (b) Any two orthogonally polarized modal fields a and
b of the step-profile waveguide can form dynamic solitons of the
threshold nonlinearity, provided two self-consistency conditions
are satisfied. The parameters no, n, and Iy are constants.

b modes in Eq. (1) is thus given by the expression
P=f_m|E(x,z)|2dx=a2Na+b2Nb, 8)

where Ny =p(1+W,)/W,, W,=+/V1—UZ and g refers
to either the a or b mode. The fields outside the wave-
guide decay exponentially as exp(— W,x/p) while the
constant of proportionality is found by demanding that ¥
and d¥/dx be continuous. Finally, the modal propaga-
tion constants are defined as B, =[(kno)2— (U,/p)*1'"2.

The compound field formed by modes a and b of the
step-profile waveguide is a dynamic soliton of the thresh-
old nonlinearity of Fig. 1(b) provided two self-consistency
conditions hold. First, the soliton intensity 7(x)=|E(x,
z)|? should be greater than or equal to the threshold in-
tensity, I, within the waveguide. This, for example, ex-
cludes the possibility of having a dynamic soliton com-
posed of two odd modes. Second, self-consistency de-
mands that 7 =/, at the waveguide boundary, x = £ p.
Thus, assuming the dynamic soliton is composed of one
even and one odd mode, we deduce from Egs. (3) and (5)
that

a’cos?(U,)+b2%sin2(Up) =1y, , )

where a? and b? are the maximum intensities of the a
and b modes, respectively.

We now ask what dynamic solitons exist for a fixed
power, P, and consider only those solitons which are most
highly localized, i.e., those which induce a single
waveguide only [17]. Figure 2 shows examples of dynam-
ic solitons, all with the same power (10 times the
minimum power required for one classical soliton alone).
The four solitons in Fig. 2(a) are composed of the ¢ =0
and g =1 modes of the soliton-induced waveguide which,
in turn, have maximum intensities a2 and b2, respective-
ly. In this case, the ratio a/b takes on a continuum of
values between two extremes. At one extreme, b =0 and
only the fundamental soliton exists, i.e., soliton “1” of
Fig. 2(a) and the broken curve of Fig. 3(a). At the other
extreme, a2 =1y, and the contribution of the fundamental
mode is the smallest possible for the existence of a dy-
namic soliton. This leads to soliton “4” of Fig. 2(a) and
the solid curve of Fig. 3(a). One important finding is
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FIG. 2. Intensity profiles of dynamic solitons. All solitons have the same power, P =10P i, but they induce waveguides with
different V values, i.e., ¥ =3.36, 4.09, 4.90, 5.56, 6.49, and 7.40 for solitons 1-6, respectively. Pmin is defined below Eq. (10). These
solitons are composed of two (one even and one odd) orthogonally polarized modes, a and b, of the induced waveguide. In (a) the dy-
namic solitons are composed of the zeroth and first modes while in (b) they are composed of the first and second modes. Arrows indi-

cate the position where 7 =1

that the greater the available power, the more nearly this
soliton appears like the first mode propagating on its
own. Thus, this two-peaked soliton appears much like
the two (n out of phase) fundamental solitons traveling
in parallel with each other, each with (approximately)
the same polarization. Solitons “2” and “3” in Fig. 2(a)
illustrate two intermediate situations, one for a flattop
soliton and the other for a soliton composed of equal-
amplitude modal components.

Another important insight comes from comparing the
fundamental soliton (soliton 1) with the dynamic soliton
(soliton 4) when both solitons have the minimum power
necessary for them to exist, i.e., positions “d”’ and “D” in
Fig. 3(a), respectively. The power of the two-peaked soli-
ton is then approximately twice that of the fundamental
soliton. This gives an indication of the minimum power
required to most closely pack two solitonlike objects
which maintain their individuality and yet travel in paral-

lel. Finally, examples of three-packed dynamic solitons
are shown in Fig. 2(b). They are composed of the g =1
and ¢ =2 modes of the soliton-induced waveguide. Of
course, dynamic solitons with an arbitrary number of in-
tensity peaks are possible for sufficiently large power be-
cause the induced waveguide can then propagate higher-
order modes with multiple intensity peaks. In all cases
we discuss, the valley created by one polarization is com-
pensated by a mountain due to the other polarization.

It is possible [18] to derive simple approximate expres-
sions for the fields and power of dynamic solitons which
are sufficiently accurate to describe all their physical
properties over the parameter range of greatest interest,
i.e., the solitons associated with the curves of positive
slope in Fig. 3(a). As a specific example, we consider dy-
namic solitons formed by the zeroth and first mode. The
modal amplitudes, a and b, then take on a continuum of
values as discussed above. In the extreme case of b =0,

FIG. 3. (a) Dependence of the induced
waveguide parameter V" on the power P of a
dynamic soliton composed of the zeroth and
first modes (solid line) and the zeroth mode
only (broken line). These curves are derived
from Egs. (8) and (9) and have the function-

al forms P=UUw/a)VI(+W)/W,+(W2/

UZ) (1 + W) /W] and P=Uw/a) (V3 /UD)
x (1 +W,)/W,, respectively. Expressions for
a and Pp, are given below Eq. (10). The
broken curve represents the minimum power
required for the dynamic soliton to exist. (b)
Representative examples of soliton intensity
profiles which correspond to the labeled points
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on the curves in (a). Broken lines denote the
positions of the soliton-induced waveguide.
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we obtain an expression for the intensity profile of a fun-
damental soliton in the form

1(x) =1 (yP)?Pcos?lxa/(yP) ] , (10)

where P=P/P i, is the relative power, Pmin=23.44Iy/a,
a=k~/n¢—nk, and y=6.88/x. Thus, the amplitude
and width of the soliton field both depend on P'7
whereas in Kerr-law material, the soliton amplitude is
proportional to P while the width is inversely proportional
to P. At the other extreme, when a2=1,h, the dynamic
soliton has an intensity profile of the form

1(x) =I{cos[xa/(4yP) ']
+ (yP/2)?sin2lxa(2/yP) 1} , an

to leading order in P.

Dynamic solitons are analogous to temporal vector soli-
tons [8,9,19-21] in that both are composed of orthogonal
polarization states. Vector solitons usually refer to sta-
tionary waves in a birefringent medium whose fields
remain axially uniform. In contrast, dynamic solitons can
propagate in a medium without intrinsic birefringence.
Although their intensity profile remains axially uniform,
their polarization state changes with propagation. The
analogous temporal dynamic solitons have the property
that each polarization, when viewed independently, is a
solitary wave but the two waves beat due to different
phase velocities. Vector solitons occur when the two
modes comprising the dynamic soliton are degenerate.
Although the mathematics of time and one-dimensional
space are similar [10], the physical approach developed
here applies only to the spatial domain.

In summary, classical fundamental solitons are the
modes of the linear optical waveguides they induce. Dy-
namic solitons are composed of two orthogonally polar-
ized beams, each of which is a mode of the soliton-
induced waveguide but need not be a soliton on its own.
The beating of these two modes gives rise to the polariza-
tion dynamics [22]. While the concept applies to any ar-
bitrary nonlinearity, n2(I), the one-dimensional threshold
nonlinearity provides the simplest example possible. A
dynamic soliton of circular cross section could also be de-
rived from the well-known modes of (circular) step-
profile optical fibers [11].
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an Photonics Cooperative Research Centre (APCRC).
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FIG. 1. (a) Step refractive index profile waveguide with a

specified maximum index no, minimum index nw, and half-
width p. (b) Any two orthogonally polarized modal fields @ and
b of the step-profile waveguide can form dynamic solitons of the
threshold nonlinearity, provided two self-consistency conditions
are satisfied. The parameters no, #, and I, are constants.



