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We discuss a novel laser scheme in which N three-level atoms maintain full cooperativity in a station-
ary regime. The intensity I of radiation is proportional to N, the linewidth scales as I /N, and the out-
put intensity Auctuations display up to 100% squeezing at low frequencies. The possibility of simultane-
ously slowing down phase diflusion and reducing intensity Auctuations makes this kind of laser an attrac-
tive goal to go for.

PACS numbers: 42.50.Fx, 42.55.—f

When several identical two-level atoms are brought to
their excited state with no external electromagnetic field
imposed then or later, the subsequent radiative deexcita-
tion can, certain conditions met, proceed collectively, i.e.,
with all N atoms acting like one rigid dipole [1,2]. The
ensuing superfluorescent radiation pulse has a peak inten-
sity I, -N while noncollective radiation would only yield
I„—N. Since the maximum energy available for radia-
tion is N times the single-atom excitation energy @co, the
temporal width of a superfluorescent pulse must be in-
versely proportional to N (r, —1/N„) while the radiative
lifetime 1/y of the excited state of a single atom would
equal the duration r„of a pulse of normal fluorescence.
For experimental realizations of superfluorescence [3] one
must, roughly speaking, make sure that the characteristic
times of all competing processes like inhomogeneous
broadening and collisions are much longer than r, . We
shall here be concerned with a new and rather diferent
type of superradiance. Like the aforementioned one, it is
collectively generated by N atoms and thus has an inten-
sity —N; unlike the former, it can be stationary rather
than transient. An even more striking diA'erence arises
for the spectral width: While a superfluorescent pulse has
a spectral width —yN, the linewidth of the superradiant
laser to be discussed presently can be extremely small,
d, v- I/N . Moreover, the intensity fluctuations within
an individual superfluorescent pulse are close to those of a
coherent state; those of the stationary output of a super-
radiant laser can be much smaller and in fact can be
squeezed nearly perfectly. We shall also discuss, at the
end of this Letter, the degradation of superradiance re-
sulting when full cooperativity of all atoms is broken; our
scheme then reduces to a more conventional Raman laser
with I—N, h, v independent of N, and no more than 50%
squeezing of the intensity fluctuations.

The simplest model of a superradiant laser accounts for
three-level atoms (see Fig. 1) placed inside a resonator.
A classical monochromatic wave in resonance with the
transition 0 2 serves as a pump. The lasing cavity
mode is taken in tune with the transition 2 1. Final-

ly, a certain collective relaxation 1 0 recycles the
atoms back to the influence of the pump. We now turn to
a more detailed specification of the three partial processes
in play. The Hamiltonian

H =i Ag(aS2~ a S~2)+i t't &(S2p —Sp2)

displays the collectivity of the pump mechanism and of
the interaction of the atoms with the lasing mode by the
appearance of the collective polarization operators 5;~
=P„-~SPj=P„(~i)(j~)". There are nine operators S~—those with i &j refer to polarizations while each "diag-
onal" one, 5;; —=P;, measures the global occupation of lev-

el i—they obey S1 =S~; and [SJ.,SI I ] =8'JkSg —8;tSk~.
The operators a and a~ annihilate and create photons

of the lasing mode. The amplitude 0 of the external
classical pump field and the coupling constant g are
specified in the Hamiltonian (1) so as to have the dimen-
sion of a frequency. In fact, A is the frequency of the
Rabi oscillations which the pump tends to impose on the
transition 0 2: The coupling constant g has an

analogous meaning for the transition 1 2 but is re-
ferred to the fictitious field of a single photon. Note that
by taking 0 as a fixed c number we formally forbid pump
fluctuations.

Two damping mechanisms must be accounted for. The
irreversible leakage of laser photons through a nonideal
mirror is commonly modeled so as to add to the time rate
of change of the mode amplitude a the term [4-6]
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FIG. 1. Three-level scheme and transitions.
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= —xa(t) +J2rc&(t), (2)

[&(t),&t(t')] =(&(t)&t(t')) =8(t —t'),

(g(t)) =(g'(t)g(t')) =0.
(3)

We may interpret the operators g and (t as representa-
tives of the vacuum Auctuations of the electromagnetic
field outside the resonator.

The atomic relaxation from level 1 back to the ground
state 0 must be a fully collective one if the laser is to su-
perradiate. Such cooperative damping will occur if the
transition in question is coupled to another mode of the
resonator. However, with respect to the latter "passive"
mode the resonator need not have a high finesse. We
shall in fact assume the simplest situation serving our
purpose, i.e., the one allowing immediate adiabatic elim-
ination of the passive mode. That situation would, in the
absence of level 2 and with level 1 populated initially, en-
tail the no-ringing limit of superAuorescence on the tran-
sition 1 0, as observed in [3]. The ensuing irreversible
additions to the time rates of change of the atomic ob-
servables involve a damping constant y and a noise force
rt(t) as [4,5,7]

t)So2 =yS i 2Soi +42 yS i 2rt,

with the damping constant K and the quantum Langevin
force g(t). The latter force ensures the preservation of
the Bose commutator [a(t),at(t)] =1 at all times: For
our purpose we can take it to have Gaussian statistics and
a white spectrum according to

squared length of the Bloch vector in the collective dy-
namics of two-level atoms. A second conservation law,
P;P; =N, is respected both by the Hamiltonian (1) and
the damping (2)-(4); clearly, none of the processes ac-
counted for is capable of changing the number of atoms.

Admittedly, the laser model just presented is a bit of an
oversimplification. Pump Auctuations, detunings, com-
petition of spontaneous emission, further atomic levels, or
the replacement of one of the three transitions i j by a
two-photon transition will eventually deserve discussion.
By leaving such refinements aside for now we hope to ex-
hibit most clearly but without inappropriate exaggeration
the potential of cooperativity for noise reduction. At any
rate, with its five parameters Ã, g, A, rc, and y even our
simple model already presents a wealth of modes of be-
havior. Quite amazingly, though, the Heisenberg equa-
tions of motion for the eleven observables 5;~,a, a ~,

x = (t/a) [H,x]+(ax/at);„,
allow for analytic treatment, at least in certain interesting
limits.

In the following we confine ourselves to the semiclassi-
cal limit N»1. Each of the eleven observables can then
be represented as a sum X=X+6'X of a dominant classi-
cal term X—N and a "small" operator valued fluctua-
tion. Of course, the proportionality of the means X to N
is a manifestation of the full cooperativity assumed. To
find the X in the stationary regime we drop X and the
noise forces in the Heisenberg equations and degrade
each operator X to a c number X. The resulting solutions
can be expressed in terms of two combinations of the five
parameters in play. One of them is a normalized dimen-
sionless coupling strength c, the other an eff'ective pump
strength p:

= —yS ioSo2+ J2yrt So2, c =g /icy, p =
( 0 ~i/Ny Jc . (7)

8Soi = y(Pi Po)Soi+ J2y(Pi Po)tl, (4)

BPo

, irr

&Pi

, irr

=2ySioSoi+ J2y(Sion+ rl Siii) .

The stochastic force rt(t) plays the same role for the
"passive" mode as ((t) for the "active" one —Eqs. (3)
thus hold for rt(t) as well —moreover, rt(t) is independent
of g(t). Two features of the collective relaxation terms
(4) are worth a comment, the nonlinearity of the damp-
ing and the "multiplicative" form of the noise: Both of
these features have as their common origin the nonlinear-
ity of the interaction of the atoms with the passive mode.
They entail the conservation of the operator [8]

gS;~Sp. =N(N+2), (~)
l,j

which generalizes the better known conservation of the

Formally, the classical equations allow for two diAerent
stationary solutions. In order to be physically acceptable,
these solutions must obey two restrictions which have a
quantum mechanical origin and are not built into the
classical equations of motion. The restrictions in question
are (a) 0 ~ S;;/N ~ 1 (due to S;;/N being probabilities)
and (P) Schwartz's inequality S;;SJJ~ ~St~~ which must
hold for all pairs ij of levels. It is a most interesting and
surprising manifestation of quantum efrects on macro-
scopic scales that the restrictions (a,P) rule out one of the
formally arising stationary solutions. The acceptable one
has the field amplitude

a = Qp(I —p), (8)41+c
the occupation probabilities S22/N = (I —p)/(] +c),
SiilN=p, and the polarizations (S~( =S;;S~~, the latter
equalities reAecting full cooperativity. Obviously, the
pump parameter must be restricted to 0~ p ~ 1. We
should note that all stationary means X can be taken as
real, as is exemplified for the field amplitude in (8). In
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fact, such a choice fixes a phase not determined by the
classical equations of motion; quantum fluctuations, to be
accounted for presently by the operators BX, cause that
phase to undergo diffusion (see below). The absence of a
threshold for the pump strength p in the mode amplitude
(8) can be seen as due to our neglect of spontaneous
emission. A less expected feature of the stationary mode
amplitude is the appearance of an upper limit for the
pump strength, p=1, and of an optimal pumping, p = 2,
at which a is maximal. As a final remark on the mode
amplitude a in (8) we would like to once more underscore
the proportionality a-N which manifests the superradi-
ant character of the laser in discussion.

To check on the stability of the stationary solution and
to find the Auctuations bX(t) one may linearize the
Heisenberg equations with respect to the Auctuations BX.
That linearization also brings about a rather beneficial
simplification of the noise: Through S~ (t)rl(t) . S;~rl(t)
the atomic noise forces in (4) are freed of their so-called
multiplicative character, i.e., they become simple inhomo-
geneous terms. Splitting the Auctuations into Hermitian
"real" and "imaginary" parts as ba =bu+ibv and, for
i&j, BS;~ =Su;J. +i6v;~, we arrive at linear inhomogeneous
equations for the eleven Auctuation operators Bu, Bv, Bu~,
6v;~, and BS;;=8P;. Because of the reality of a and S;~
the linearized equations fall into two separate blocks, one
for the four imaginary parts bv, bv;J (i&j), and the other
for the seven real parts Bu, Bu;z, and BP;; obviously, the
imaginary parts may be interpreted as phase fluctuations
through Bv =aBp, etc.

Stability depends on the three parameters c, p, and
Ny//Ic. We shall restrict ourselves in the present paper to
discussing the "adiabatic" limit Ny/x ~. In that case
a necessary condition for stability is p & (I —c)/2 which
for c & 1 introduces a pumping threshold. A second sta-
bility condition restricts the pump strength from above,

p ~c/(1+2c). These restrictions arise for the phase
fluctuations. By contrast, the independent equations for
the amplitude Auctuations are reduced in number from 5

to 1 in the adiabatic limit and have a single characteristic
attenuation rate,

order unity [9]. Incidentally, phase diA'usion is manifest-
ed by the low-frequency divergence of

bt (cu ), (bv (cp) b'v (cv') ) —I/cu '.
In view of the phase diAusion just discussed, the rea1

part Bu of the mode amplitude a is distinguished, among
all linear combinations of a and a t with the form
ae ' +a e', by the greatest potential for squeezing at
low frequencies [10,11]. The amplitude correlation func-
tion (bu(cv)bu(co')) is thus of special interest. An ap-
pealingly simple result is again obtained in the adiabatic
limit Ny/Ic)&1. We quote the corresponding correlation
function for the field a,„&(t)=J2xrpa(r) —pipe(r),
where so is the cavity round trip time, transmitted to the
outside of the cavity [5] through the outcoupling mirror,

(bu, .t(co)bu, „,(co')) —b(co+co') I—S(p, c)
1+co r

where positive values of the "squeezing, "
(1+6c+c )(I —2p)+4cpS p, c

2(1+c)'(I —p) '
indicate noise reduction below the vacuum level. Obvi-
ously, then, the Auctuation spectrum in (11) displays a
Lorentzian dip of the width 1/r given in (9), centered at
zero frequency. Ideal squeezing, S= I, is implied by (12)
at c= 1,p=O. The plot in Fig. 2 reveals a Aat maximum
of S(p, c) near the point of ideal squeezing.

As another indicator of nonclassical Auctuations, we
have calculated Mandel's parameter Q=((n —(n)) )/(n)
—

1 where n =a ta is the stationary photon number inside
the cavity. This is immediately accessible from a =a+ ba
and the double Fourier transform of the correlation func-
tion (bu(co)bu(cp')). The result is Q(p, e) = —S(p, c)
x(1 —c)(l —p)/(3+c —2p). Interestingly but not unex-

1/r =4m.(1+c) (1 —p)/(3+ c —2p), (9)
which is incapable of going negative.

%e have solved for the frequency dependent phase
Auctuations bv (ro) =f+dt e+'"'bv (t). -The linewidth
h, v of our superradiant laser is then accessible through
(bv(cp)bv(cp')) =2rrb(co+co') ~a~ Av/co . The following
simple expression is obtained in the limit N » 1, Ny» x,
CO K',

hv= x' (I+c)[p (1+c) +(1 —p) (I —c) ] (10)
g N p(1 —p)( —I+c+2p)

The dependence on the number of atoms, Av= I/N,
oAers the interesting possibility of line narrowing by col-
lective radiation. To fully exploit that potential one
would have to strive for pump and coupling strengths of

o
FIG. 2. The squeezing function S(p,c) of the collective laser

according to (12). S=1 corresponds to optimal squeezing,
S=O to a coherent state.
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pectedly, negative Q and positive squeezing S are con-
comitant. The minimal value of Mandel's parameter,
Q(0, 1+J8) = —0.59, is a little lower than midway be-
tween the coherent-state value Q =0 and the absolute
minimum Q =1 attained for an eigenstate of the photon
number. Incidentally, the point of optimal squeezing
(p =0 e = I ) is not the one of minimal Q; instead,
Q(0, 1) = ——,'.

It is good to compare the superradiant laser under dis-
cussion with a similar but noncollectively radiating one.
To that end, we break the collectivity by letting the relax-
ation 1 0 take place independently in each atom. The
irreversible rates of change (4) are then modified accord-
ing to S;/Skt X„-tS,""Sft =&/kS;t and S;, ti —Z„S,", tl„
The single-atom noise forces g„are all independent; each
of them has properties like those given for g in (3). Our
reference system thus is an ordinary Raman laser akin to
that recently discussed by Ritsch, Marte, and Zoller [12].
Clearly, the stationary number of photons now must scale
linearly rather than quadratically with N. We find, for
N»1,

y Jp.«-p. )/2, (13)

where the "noncollective" pump parameter p„=20 tc/

Nyg must range in the interval [0,1] for the stationary
solution to exist. A conventional noise analysis yields the
line width, for Nc »1,

(~ ) tcg pn

(y+~)' 2(l-p. )
(14)

The asymptotic independence of (Av)„of N is in striking
contrast to the scaling Av —I/N in the superradiant
case. Finally, the output amplitude fluctuations come out
as in (11) but with I/r„=4tc(I —p„) and the squeezing
S„(p„)depending on p„as

S, (p, ) = [2 —4p„' —(I+p. )jzp, (I —p„)l .
1

4(1 —p„)'
(15)

It follows that the maximum squeezing, S„(0)= 2, is at-
tained at the cusp of S„(p„) at vanishing pumping. A
flatter maximum resides at p„=0.11 but has only
S„(0.11)= 0.46. At any rate, the zero-frequency squeez-
ing in the noncollective laser is rather inferior to the
100% noise reduction met with above for the superradiant
case.

Mandel's Q now comes out as Q„(p„)= —(1 —p„)
&&S„(p„)which rises monotonically with increasing pump
strength p„ from Q„(0)= —

—,
' to Q„(p„=0.48) =0,

from which latter point on one encounters "super-
Poissonian" amplitude noise. Again, we find noisier be-
havior in the noncollective case than for the superradiant
laser.
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