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Alpha-Particle Binding Energies for Realistic Nucleon-Nucleon Interactions
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The four-nucleon Yakubovsky equations are solved precisely for various realistic NN interactions.
The resulting binding energies underbind the n particle by about 1 to 5 MeV. The one-boson-
exchange NN potentials with smallest deuteron d-state probabilities provide the strongest binding.
Within the group of NN-force models used the 3N and 4N binding energies are strongly correlated.
The probabilities to fi.nd two nucleons at a distance r are compared to each other in the deuteron,
the triton, and the a particle.

PACS numbers: 21.45.+v, 21.10.Dr, 21.30.+y, 27.10.+h

What is a useful Hamiltonian for low energy nuclear
physics (below the pion threshold) to describe bound
and scattering states? Is it a good approximation to
use the same nucleon-nucleon (NN) interaction, which
acts between two free nucleons? Are three-nucleon forces
(3NF) (or even forces between more than three nucleons)
required? Is the nonrelativistic framework sufBcient?
These are old questions. The existence of modern su-

percomputers combined with powerful algorithms allows
us to test existing theoretical concepts quantitatively. At
least this helps to guide theory to some extent, which is
still unable to control the problem of strong interactions
on the meson and/or quark level.

In recent years rigorous solutions [1) of the three-
nucleon (3N) Faddeev equations based on realistic NN
interactions showed that 3N scattering data (cross sec-
tions and various spin observables in elastic nucleon-
deuteron scattering and in the breakup process) can be
described extremely well in the most simple dynamical
scenario: unperturbed NN forces only in a nonrelativis-
tic Schrodinger equation. This is independent to a large
extent of the specific choice of the NN interaction, which
demonstrates the "stability" of that result [2]. There are
a few exceptions still disturbing that simple picture: the
nucleon-deuteron analyzing powers at very low energies,
which are very sensitive to the P& NN forces [3] and
possibly some breakup cross sections [2]. While the first
defect might be cured by better fine tuning of the NN
forces (new dedicated measurements especially in the np
system, improvement of the NN phase-shift analysis and
corresponding adjustments of the NN force parameters),
the latter one, if confirmed experimentally, points possi-
bly to the action of a 3NF. Prom the very first theoretical
insight [4] into the action of a 3NF in the 3N continuum,
we see that it is quite possible that a signature of the
3NF shows up in some breakup configurations and not in
other ones. Thus it will require very careful studies both
experimentally and theoretically to manifestly pin down
the action of a 3NF. In any case it will be a small effect
in 3N scattering.

The triton binding energy still poses a problem [5].
Thereby the strength and shape of the NN tensor force

in the dominant Sj- D~ state plays a decisive role. Its
action shows up in the d-state probability Pp of the
deuteron, which unfortunately is not a measurable quan-
tity, but whose value is strongly correlated to the theoret-
ical triton binding energy. The smaller the Pp the larger
the triton binding energy. This is exhibited in Table I for
the various current realistic NN interactions (34 channel
calculations). Thus all the currently available NN po-
tentials underbind the triton by about 0.3—1.0 MeV (this
estimate leaves out the Reid potential which should be
updated and the Bonn A potential which might be crit-
icized because of its wrong prediction of the ei phase-
shift parameter at high energies), which has to be not
only compared to the experimental binding energy of 8.48
MeV but also to the typical total potential energy in the
triton, which is about 50 MeV. Thus the missing energy
is only of the order of 2'Po of the total potential energy.
It is a fact that the nuclear binding energies are differ-
ences of big numbers (kinetic versus potential energies),
which implies that even small deficiencies in the theory
are magnified. Purther experimental efForts to narrow
down the still existing uncertainty in the Sq- Di mix-
ing parameter ei are under way [6,7]. This will reduce
the spread in theoretical binding energy predictions, once
the potentials are fitted to the same "final "

eq value.
However, there will still remain a difference between lo-

cal NN potentials and potentials which have in addition

Potential
Reid
AV14
Paris
Njimegen
Bonn B
Bonn A
Expt.
Without Coulomb

Pg
6,47
6.08
5.77
5.39
4.99
4.38

H
7.34
7.68
7.46
7.63
8.14
8.32
8.48

4He

23.45
24.62
24.26
25.03
27.04
28.11
28.30
29

TABLE I. 3N and 4N binding energies for various realistic
NN potentials in comparison with experimental values, The
binding energies increase with decreasing deuteron d-state
probabilities Pq.
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nonlocal parts like the Bonn one-boson-exchange (OBE)
potentials and which provide additional binding energy.

Now the o. particle has a much higher central density
and might therefore possibly pose a harder test for cur-
rent NN-force models. This has been studied with great
care by the Argonne-Urbana group [8,9] and in [10], us-

ing variational Monte Carlo and Green's-function Monte
Carlo (GFMC) techniques. They investigated the Ar-
gonne AV14, the Urbana V14, the Nijmegen, and the r
space Bonn (OBEPR) 2N potentials, including on top
various 3N force models. However, up to now they
did not study meson theoretical NN forces, which are
nonlocal and not so easily accessible by their configura-
tion space techniques. The variational upper bounds are
quoted to be uncertain by about (3—4)% [9), which can
lead to up to 1 MeV underbinding in the o. particle. The
Green's-function Monte Carlo method is in principle an
exact technique for bosons and the accuracy is limited
only by statistics. For fermions, however, there are still
problems and also for certain momentum dependencies,
which occur in realistic NN forces [10]. For the model
forces Reid V8 and AV8 the GFMC provided the most
rigorous 4He calculations [10] and comparison to varia-
tional results indicates that the latter can lack up to 1.5
MeV of binding energy. It is therefore very desirable to
use directly the generalization of the exact Faddeev for-
malism for three particles and the Yakubovsky scheme
for four particles [ll]. We developed techniques to solve
the 4N Yakubovsky equations for any given NN inter-
action in [12] and shall present here the final converged
results.

Before doing that we would like to brieHy sketch
Yakubovsky's idea, which is equivalent to the work by
Alt, Grassberger, and Sandhas [13]. Those schemes have
been worked out even for any general number of parti-
cles. One regards all possible fragmentations of the sys-
tem of four particles into subclusters. Obviously there are
two two-body fragmentations of the type 3+1 and 2+2.
The three-body subclusters can further be fragmented
into two-body subclusters and a third particle. Then one
can form chains of consecutive fragmentations until one
reaches two-body subclusters: 4 —+ 3+ 1 ~ 2+ 1+ 1. In
the last stage one singles out one specific pair of particles
in the two-body subcluster. There are twelve chains of
that type. In the case of the 2+2 partitions, there is no
further fragmentation. If one singles out one specific two-
body subcluster, then there are six possibilities. The art
is now to decompose the total four-body wave function
into eighteen parts related to the eighteen ways of frag-
menting a group of four particles. Those parts are called
Yakubovsky (Y) components and obey a set of eighteen
coupled equations, the Yakubovsky equations. We refer
to the original work [11,13] for the way this is done and
to [12,14] for the application to the actual 4N problem,
our notation, and more formal background. For identical
particles the twelve Y components related to the 3+1 par-
titions are all identical in their functional form and one
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can choose one Y component and generate the remaining
ones through suitable particle permutations; the same is
true for the six Y components of the 2+2 partition. Only
one is needed and the remaining ones are generated by
particle permutations. The two independent Y compo-
nents, gr and Q2, related to the 3+1 and 2+2 partitions,
obey the coupled set [12]

gr = —Gp T P P34 Qr + Gp T P g2,

GpTP (1 —P34) Qr. (2)

We solve the set (1),(2) in momentum space and in a par-
tial wave projected basis. The set of all relative orbital
angular momenta, spins, and isospins is usually called
a channel. Apparently many channels will be active in
a complete description of the 4N dynamics. We refer
to [12] for all those technical details and also for the al-
gorithm to handle the very large number of unknowns (of
the order 10s).

Our techniques have been checked [12] for s-wave
model forces against a configuration space calcula-
tion [15], which is based on a totally difFerent mathe-
matical structure, partial integral-differential equations.
The agreement is very good. A harder test [12] for the
local MT-V potential, requiring already many angular
momentum combinations (channels), against an exact
GFMC [16] result and very precise variational calcula-
tions [17,18] was also very successful.

We use current NN potentials, which describe quite
well the large amount of NN data and deuteron proper-
ties. These are the Nijmegen [19],the Argonne AV14 [20],
the Paris [21], and the Bonn B and Bonn A [22] poten-
tials. We also include, more for historical reasons, the
Reid potential and its supplemented form [23]. Our re-
sults (based on 190 channels) are displayed in Table I.
They are based on keeping the NN forces different from
zero in all NN partial wave states with total angular
momenta j & 3. This is suKcient in the triton within 20
keV. Since 4He and 3H binding energies are correlated,
as will be shown below, and the slope is roughly 5 we es-
timate the additional contribution to the binding energy
of neglected higher partial wave components to be about

In that set occur permutation operators P34 P
Pq2 P23+ Pq3 P23, and P = P~3 P24, the free four-body
propagator Gp and the operators T and T describing
the full dynamics within a three-body subcluster and for
two noninteracting two-body clusters, respectively. They
obey

T = t+T P Gp

T=t+T PGp t,

where t is the off-shell t matrix for the particles 1 and
2. The four-body wave function composed of eighteen Y
components is

(1 + P P34 P + P)(el P34 el + e2) (5)
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100 keV. More details and a more precise estimate on the
neglected NN force components for j & 4 will be given
elsewhere. The many channels allow that, for instance,
a 3N subcluster does not only exist in the state of total
3N angular momentum and parity 1/2+, which are the
3He or 3H ground state quantum numbers, but also in

1/2, 3/2, and 3/2+. Also the accompanying fourth
nucleon can have corresponding relative orbital angular
momenta 0 and 1. In the case of a 2+2 partition, the
two two-body subclusters cannot only be in the state of
total angular momentum and parity 1+, which is realized
in the deuteron, but in all states 0+ up to 3+. Finally
the relative orbital angular momenta of the two two-body
subclusters can be 0, 1, and 2. The computer time for
one energy is about 3 h on a NEC-SX3 (plus once 5 h for
the geometrical coefficients).

In Table I we see a rather large spread in the pre-
dictions of the theoretical o.-particle binding energies of
about 4 MeV. Again the smaller the Pd the larger the
binding energy. Since we excluded the pp Coulomb force,
which leads to an estimated Coulomb energy of = 700
keV [9,10], we should compare our theoretical results to
—29 MeV. The meson-theoretical OBE Bonn A and
Bonn B results come rather close to the experimental
value, within 1 or 2 MeV, whereas the other potentials
are off by 4—5 MeV. There is a well established charge-
independence breaking of the NN force in the state So,
saying that the np force is slightly stronger than the
strong pp force. If one takes that into account, the Bonn
results have to be reduced by about 0.6 MeV [12]. The
missing binding energies, especially for the Bonn poten-
tials, are again only about 2%%uo of the total potential en-
ergy ((V)B „„B= —104.8 MeV). That defect is therefore
very similar to the one in the triton.

I et us now compare our results to existing variational
upper bounds. For AV14 we get 24.62 MeV against 24.24
MeV [9], 24.45 MeV [24], and 23.86 MeV [10], for Ni-

jmegen 25.03 MeV against 23.92 [10], and for Paris 24.26
against 25.5 MeV [25]. With the exception of the last
case we are below the variational upper bounds.

Now we demonstrate that 3N and 4N binding energies
are correlated. For simple forces this was shown to be
true for the first time in [26]. We display in Fig. 1 3N
and 4N binding energies for the various realistic NN
interactions. We see indeed a narrow band, which would
shrink even more in width if the charge-independence
breaking in the state So were taken into account. Thus,
one might say unfortunately, the 4N binding energies
are strongly correlated to the 3N binding energies, at
least for those NN force models. The 4N system does
not probe those forces in a different manner as the 3N
system. Strong deviations from that linear correlation
would have been a more interesting insight in order to
distinguish the various NN forces. The band in Fig. 1
hits the experimental point. Additional dynamics (other
NN forces with new features and/or 3NF, relativistic
effects) have to move the theory along the band to the
experimental point.

Finally we would like to compare the probability C(r)
to find two nucleons at a certain distance, averaged over
spin directions, for the deuteron, the triton, and the o.
particle. C(r) is normalized as lo C(r)dr = 1. In Fig. 2
we show our results for the Bonn B NN potential. The
different tails result obviously from the different sepa-
ration energies. More interesting is the nearly parallel
behavior of the C(r)'s for r & 1 fm. If one multiplies
the deuteron and triton correlation functions by appro-
priate factors such that their maxima coincide with the
maximum of the o,-particle correlation function, then for
r & 1.7 fm the three curves are very close to each other.
They can be brought to a nearly perfect coincidence if one
shifts in addition the deuteron correlation function by 0.1
fm and the triton correlation function by 0.05 fm to the
left. This tells us that the three correlation functions are
very closely related to each other. Proton-proton densi-
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FIG. I. The a particle against the triton binding energies
for various realistic NN forces are correlated in a band, which
includes the experimental point.

FIG. 2. The correlation function for the deuteron (dotted
curve), triton (dashed curve), and the n particle (solid curve)
based on the Bonn B potential.
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ties for He and He are also shown in [27]; however, they
are based on a severely truncated six-component Y wave
function.

In conclusion, we have calculated for the first time for
various existing realistic NN forces the o,-particle ground
state energy by solving the 4N Y equations precisely.
Depending on the d-state probability in the deuteron,
as generated by the various NN forces, the o.-particle
binding energy is within 1—5 MeV from the experimen-
tal value. It appears that an improved knowledge of the
deuteron wave function itself is needed to decide which of
the potentials is closer to reality. That knowledge might
be inferred from electron scattering and nucleon-deuteron
scattering at higher energies, where the obscuring rescat-
tering effects diminish. In view of the relatively small
defects in the binding energy in comparison to the total
potential energy and the exciting agreement of 3N scat-
tering observables with the data, one can say that this
simple dynamical picture of unperturbed NN forces is
already a good representation of reality.
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