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Statistical Mechanics of Kinks in 1+ 1 Dimensions
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We investigate the thermal equilibrium properties of kinks in a classical p field theory in 1+1 dimen-
sions. The distribution function, kink density, and correlation function are determined from large scale
simulations. A dilute gas description of kinks is shown to be valid below a characteristic temperature. A
double Gaussian approximation to evaluate the eigenvalues of the transfer operator enables us to extend
the theoretical analysis to higher temperatures where the dilute gas approximation fails. This approach
accurately predicts the temperature at which the kink description breaks down.

PACS numbers: 11.10.Ef, 05.20.—y

The statistical mechanics of coherent structures such as
solitons and solitary waves in nonlinear systems has been
a subject of study for some time [1]. Recent interest has
been fueled by new applications not only in condensed
matter physics [2,3], but also by potential applications in

particle physics (sphalerons) [4] and cosmology (domain
walls, baryogenesis) [5]. In this paper we focus on the
classical equilibrium statistical mechanics of solitary
wave solutions ("kinks") of a tachyonic mass p field
theory in 1+ 1 spacetime dimensions with Lagrangian

ized phonons were considered, leading to substantial
corrections to the results of KS.

A key result of these eAorts is the prediction that the
spatial density of kinks

nk tx: JEt,Pexp( Et, P),— (3)

where Ek = J8/9m /A, (Et, =J8/9 for the dimensionless
form of the theory) is the kink energy, and P the inverse
temperature (for the dimensionless case, P P/a Jk).
A related prediction is that at low temperatures the field
correlation length k defined by

For our simulations we use the dimensionless form of this
theory, given by the transformations N ap, x x/m,
and t t/m, where a =m /k. The equation of motion
then becomes

(y(0)y(x)) -exp( —x/k)

has an exponential temperature dependence [7],
t/2

1 z 1
exp(Et, P).

4 3 v Ekp

(4)

(5)

What makes this model so useful is that its behavior is
representative of a large class of soliton-bearing systems.
Moreover, it is amenable to both theoretical analysis and
numerical simulation.

The statistical mechanics of kinks in this system has
been studied by two approaches. In the first, and phe-
nomenological, approach one assumes that the kinks and
the fluctuations ("phonons") about the asymptotic field
minima may be treated as weakly interacting elementary
excitations. The canonical partition function can then be
found by standard methods [1,6,7]. Alternatively, as
shown by Krumhansl and Schrieffer (KS) [6], building
on earlier work of Scalapino, Sears, and Ferrell [8], it is

possible to calculate the partition function, in principle
exactly, by exploiting a transfer operator technique. KS
showed that in the low temperature ("dilute gas") limit
the partition function factorizes into a contribution from
a harmonic term and from a tunneling term which they
were able to identify with the phonon and kink contribu-
tions, respectively, in the phenomenological theory. The
ideas of KS were further refined and extended to a wider
class of systems by Currie, Krumhansl, Bishop, and Trul-
linger [7]. In particular, interactions of kinks with linear-

Computer simulations to verify these results date back
to Ref. [9] where only a qualitative agreement was found.
Recent work [10-12] has led to more detailed compar-
isons; however, significant discrepancies have been report-
ed. This has led to theoretical speculation [13,14] re-
garding possible corrections to the dilute gas theory of
kinks. It has been suggested that these discrepancies are
due to finite size eAects and phonon dressing of the bare
kink energy (breather contributions to the free energy
may also be significant [15]). As we show in this Letter,
the earlier simulations were not carried out at low enough
temperatures: Nevertheless, the authors interpreted their
results in terms of WKB formulas that are simply not a
valid description over the range of temperatures studied.
In this intermediate temperature regime, there is no
unique characterization of what constitutes a kink and
how to diAerentiate it from a nonlinear phonon. By going
to low enough temperatures where the dilute gas results
are valid, we are also able to rule out an earlier claim of
substantial phonon dressing even at these temperatures
[9].

We have studied the equilibrium statistical mechanics
of kinks in the p model (1) by implementing a Langevin
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code on a massively parallel computer. The key idea is to
supplement the equation of motion (2) with noise and
viscosity terms obeying an appropriate fluctuation-
dissipation theorem so that the system is driven to
thermal equilibrium at the desired temperature [16]. To
understand our results in the high and intermediate tem-
perature regions not susceptible to a dilute gas analysis,
we have used a double Gaussian wave function approxi-
mation for the quantum mechanical problem which re-
sults from applying the transfer operator method. Not
only is this method accurate but it also suggests a natural
decomposition of nonlinear phonon and kink degrees of
freedom in the intermediate temperature regime (details
will be reported elsewhere [17]). Our results are (I) the
dilute gas predictions for the kink density and the correla-
tion length are in good agreement with the simulations
below a certain (theoretically estimable) temperature, (2)
above this temperature the double Gaussian results for
the kink number and the correlation length agree with the
simulations, (3) kinks are found to disappear above a
characteristic temperature, in good agreement with our
theoretical prediction, and (4) our Gaussian approxima-
tion accurately describes the classical single point field
distribution function at high and intermediate tempera-
tures where the dilute gas (WKB) approximation breaks
down.

The canonical partition function for the Lagrangian
(I) is given by the functional integral

Z = D&Dnexp[ —PH(P, z)], (6)

where z is the canonical momentum of the field and H
the field Hamiltonian. The transfer operator technique
[8] reduces the calculation of the partition function in the
thermodynamic limit to simply finding the ground state
energy of the double well quantum Hamiltonian (here
written for the dimensionless case),

I -2+ I -4
2P2 4P4

where t7(=pal. At low temperatures the two wells are
widely separated and the ground state energy is given by
the oscillator ground state energy for one of the wells
minus the tunnel-splitting term, usually calculated by
WKB methods. The dilute gas or WKB approximation
for the kink number is valid when the tunnel splitting is
small enough such that only the first two energy eigen-
states are necessary to estimate the ground state energy
of the Hamiltonian (7) [18]. At higher temperatures
where kinks still exist, higher energy states cannot be ig-
nored. Since kinks are associated with tunneling, we ex-
pect them to vanish when the ground state energy is
higher than the classical barrier height: This intuition is
confirmed by our simulations.

One can compare the simulations of the kink system
with numerical solutions for the energy eigenvalues of the
Hamiltonian Hg. Instead, we take a diAerent approach
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FIG. 1. The classical distribution function P[p] given by the
simulation (solid line) and the distribution +$ from the double
Gaussian approximation (dashed line) plotted against p for
P=2. The potential V= —(1 —

p /2P )P /2P of the equivalent
quantum problem (7) is also shown.

by implementing a double Gaussian variational method
which is an order of magnitude more accurate than the
simple Gaussian approximation [19] for this problem and
correctly accounts for the reduction of energy due to
overlap terms in the wave functions of the two wells, at
least for moderate to large overlaps. Three qualitatively
different regimes exist: (I ) All the energy eigenvalues lie
above the classical barrier, (2) the ground state energy
lies below the classical barrier height, and (3) the energy
diAerence between the ground and first excited state be-
comes negligible in comparison with the energy difference
between the ground and the second excited state (this
occurs for P & 6). Our simulations confirm the theoreti-
cal expectations that there are no kinks in region (1), that
there are kinks, but that the dilute gas approximation is
invalid in region (2), and finally, that the dilute gas ap-
proximation is accurate in region (3) (a regime unex-
plored in detail by previous simulations).

We measure the classical single point field distribution
function P[p] directly in our simulations. For the analo-
gous quantum mechanical problem this is just the square
of the ground state wave function +0. Results from the
simulations and our theory are compared in Fig. 1 and
are in reasonable agreement. The presence of kinks im-
plies a double peak in P[p] [20] (the converse is false)
while a single peak at the origin means that kinks and
thermal phonons can no longer be distinguished. From
the simulations such a transition occurs at P = 1.7, in

agreement with the theoretical calculation of when +0
goes over from a double to single peaked distribution. As
expected, this is also the temperature (P =1.734) where
the ground state energy crosses the classical barrier
height (a discussion of various methods to determine the
characteristic temperature is given in Ref. [21]). The
double peaks in the distribution function move inward
from the classical minimum as the temperature increases
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FIG. 2. Field configurations, from top to bottom, at P=2,
P=4, and P=8. Only a 1000 lattice unit sample of the total
lattice size of 16384 is shown.

(this is clearly seen in Fig. 1). Physically this can be un-
derstood as nonlinear phonon corrections due to the fact
that near each minimum, the potential is not symmetric
under reflection around the minimum.

The Langevin equation for the dimensionless theory is

(8)

To guarantee an approach to equilibrium, the Gaussian,
white noise F, and the viscosity rt are related via the
fluctuation-dissipation theorem:

(F(x,t)F(x', t')) =2riP 'l(x —x')8(t —t') .

We carried out numerical simulations on lattices with
16384 sites and solved the Langevin equation using a
standard Euler algorithm. The time step was At =0.02
and the lattice spacing was hx =0.5. For all the simula-
tion results reported here we used a viscosity of g =1.0.

Our system size is 1 to 2 orders of magnitude larger
than that in most previous simulations. Large system
sizes are necessary to get acceptable statistics at low tem-
peratures. Systems were evolved from a random initial
condition to equilibrium. The length of time necessary to
ensure equilibrium increased with inverse temperature.
For P=8 the time required was approximately 10 time
steps, and for the highest temperatures, less than 10
steps.

Two quantities of interest reported here are the kink
number and the field correlation length. To compute the
kink number, we need an operational way to identify
kinks, although there is an exact kink solution available
theoretically. As a result we examine several possible
definitions, all of which rely on a knowledge of the kink
size. From the classical solution for a kink centered at
xp, P =tanh[(x —xp)l J2l, the kink scale Lq is approxi-
mately 8 lattice units. Raw kink configurations are
shown in Fig. 2. At low temperatures (P & 5), kinks may
be identified easily; however, at higher temperatures this
is clearly not the case.
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FIG. 3. Total number of kinks and antikinks as a function of
P. Squares denote counts with a smoothed field (smoothing
scale of 8 lattice units) definition of kinks, triangles for the
zero-crossing count method explained in the text, and the solid
line is a fit by (3). Where not shown, error bars are of the order
of the sizes of the symbols. The smoothed field result is in

agreement with the results of Ref. [12] for P (5.

The simplest thing to do is to count the number of zero
crossings of the field, since one may argue that these are
the "tunneling events" which correspond to kinks. How-
ever, at higher temperatures there are zero crossings due
to thermal noise, and counting all zero crossings would
lead to a gross overestimation of the number of kinks. A
possible solution is to use a smoothed field by either
averaging or block spinning the actual field configuration
over a length of the order of the kink scale. The latter
approach was taken in previous simulations [10-12].
This solution is not without flaws either, as rapid fluctua-
tions can still appear as kinks. We prefer to count kinks
in the following way: At a particular time we first find all
zero crossings. To test the legitimacy of a given zero
crossing we check for zero crossings one kink scale (8 lat-
tice units) to its right and to its left. If no zero crossings
are found, we count it as a kink; otherwise not.

The number of kinks is plotted against P in Fig. 3.
Above P —6, the averaged field method and our method
for counting kinks agree. Moreover, in this (low temper-
ature) range, the dilute gas expression for the kink num-

ber (3) is in excellent agreement with the data. At
elevated temperatures, there is a clear disagreement be-
tween the two methods of counting kinks. The average
field technique has the number of kinks monotonically in-

creasing with temperature, whereas, in accord with intui-
tion and the behavior of P[rtil, the second technique clear-
ly shows a reduction in the kink number at higher tem-
peratures. Moreover, in this temperature regime the
number of kinks computed with the smoothing method
depends strongly on the smoothing scale. We conclude
that for P ( 6 the number of kinks cannot be extracted
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FIG. 4. Field correlation length X as a function of P. The
short-dashed line is the Gaussian prediction, whereas the long-
dashed line is the WKB result (5).

with any confidence from the smoothing method. Unfor-
tunately, this is precisely the temperature regime ex-
plored in previous simulations. (The problem with
defining a kink number at intermediate temperatures has
also been noted recently by Krasnitz and Potting [22].)

The correlation length k is plotted against p in Fig. 4.
For P & 6, the WKB prediction (4) holds, whereas for

P & 5, where the wave function overlaps are not negligi-
ble, the double Gaussian approximation is valid. For-
tunately, there are no ambiguities here with regard to
measurements at higher temperatures.

As a consequence of the above results, we conclude
that the dilute gas or WKB approximation is excellent for
P & 6 with no further phonon dressing of the bare kink
energy beyond that already included in (3) and (5) at
these low temperatures. At higher temperatures, the
WKB analysis fails, though theoretical progress is possi-
ble with the double Gaussian technique.
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