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The time evolution operator for any quantum-mechanical computer is diagonalizable, but to obtain
the diagonal decomposition of a program state of the computer is as hard as actually performing the
computation corresponding to the program. In particular, if a quantum-mechanical system is capable of
universal computation, then the diagonal decomposition of program states is uncomputable. As a result,
in a universe in which local variables support universal computation, a quantum-mechanical theory for
that universe that supplies its spectrum cannot supply the spectral decomposition of the computational
variables. A “theory of everything” can be simultaneously correct and fundamentally incomplete.

PACS numbers: 89.70.+c, 03.65.—w

When can a system compute? Three conditions must
be met: First, one must be able to prepare the system in
a state that corresponds to a program state for a comput-
er, without necessarily knowing beforehand the result of
the computation. Second, the system’s dynamics on that
state must realize the dynamics of the computer. Third,
one must be able to make measurements on the system
that allow one to determine if the computation has been
completed, and if so, extract its result. These would seem
to be not only sufficient but necessary conditions for com-
putation.

Some quantum-mechanical models of computation that
satisfy these conditions are the ballistic quantum comput-
ers of Benioff [1], Deutsch [2], and Feynman [3],
Bennett’s dissipative enzymatic and Brownian motion
computers [4], and the quantum cellular automaton com-
puters of Margolus [5), as well as the error-correcting
quantum computers of Peres [6] and Zurek [7]. Other
fundamentally quantum-mechanical systems to which
these conditions apply are semiconductor-based digital
computers, analog computers, and human beings calcu-
lating on their own, or with a slide rule or abacus.

A wide variety of quantum systems obey the require-
ments for computation outlined above. In this paper, it is
shown that any quantum system that meets these three
conditions possesses a block diagonal form for its time
evolution operator, but that the ability to decompose the
input, ‘“‘program’ states of the quantum computer in
terms of this diagonal form allows one to determine im-
mediately which programs result in complete computa-
tions, and the results of those computations. According-
ly, the problem of determining the diagonal or spectral
decomposition of the program states of a quantum com-
puter is at least as hard as any problem that the computer
can solve. In particular, if the quantum computer is a
universal, digital computer, the spectral decomposition of
its program states is uncomputable.

The basic idea behind this result is simple: Knowledge
of a quantum system’s spectrum, together with the ability
to decompose a given state in terms of eigenstates, allows
the straightforward evaluation of the time evolution of

the state. Spectral decomposition is a valuable tool be-
cause it makes time evolution completely transparent.
Now suppose that a system possesses observables that
support computation, where computation may be inter-
preted either narrowly to mean digital computation alone
or broadly to mean a process in which those observables
pass through a sequence of configurations, in the course
of which information is transferred and transformed. In
either case, the spectral decompositions of two config-
urations of the observables allow one to determine wheth-
er or not there is a nonzero amplitude for one config-
uration to evolve into the other. Finding the spectral
decomposition of two such configurations must then be at
least as hard as determining whether one has a chance of
evolving into the other.

In particular, spectral decomposition makes it possible
to determine immediately whether or not a given program
state for a computer evolves into a given output state.
But as noted above, for a universal digital computer there
is no algorithm that can determine in a finite time wheth-
er or not an arbitrary program state evolves into a given
output state. Essentially, spectral decomposition makes
all future time evolution transparent, while the future
time evolution of a universal computer is by necessity to
some degree opaque. Complete spectral decomposition
for observables that support universal computation is
therefore impossible.

This result has consequences for quantum-mechanical
theories that purport to describe the universe as a whole
(“theories of everything”). Suppose that it is possible,
starting from some statement of such a theory, to derive
the theory’s eigenstates and spectrum. In a universe that
supports complicated information processing in terms of
some observables, obtaining the spectral decomposition of
those observables is as hard as evaluating the results of
the process. If the universe supports universal computa-
tion, then spectral decomposition of even the simplest
state may prove impossible, if that state results in an ar-
bitrarily long computation. [Two primary physical re-
quirements for the universe to support universal computa-
tion are (a) that it expand forever and (b) that excess
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free energy always be available for information process-
ing. Neither requirement is implausible.] As a result, a
theory of everything can be correct, can supply spectrum
and eigenstates, and yet fail to give a full account of what
goes on in the universe.

To prove the results presented above, a quantum-
mechanical account of computation is required. Suppose
that a quantum system Q is to compute the values of a
function f. The system must be capable of being
prepared in states corresponding to the arguments of the
function, its dynamics must perform the computation,
and measurements on the system must reveal the values
of the function. The conventional quantum-mechanical
description of this process (in the Schréodinger picture) is
the following:

(0) The system and environment are in some initial
state, described by a density matrix, po € # @ #*, where
#f is the Hilbert space for system and environment.

(1) The system is prepared in a program state corre-
sponding to the input b. If the quantum system is to be a
useful computer, the process of preparing the system in
an input or program state should not require knowledge
of the result of the computation. The system and envi-
ronment are now in the state

po(b) =Pin(b)poPin(b)/tr[Pin(b) poPin(b)], 1)

where {P;,(b)} are a set of projection operators corre-
sponding to the different inputs b: P (b) =P ),
Pin(B)Pin(b') =84 Pin(b).

(2) The system and environment evolve over time,

po(d) — p,(B) =U)po(bI)U (1) , )

where U(¢) is a unitary operator.

(3) Measurements are made to determine whether the
computation is completed, and if it is, to extract the re-
sult: Once again, the process of making these measure-
ments should not require a priori knowledge of the result
of the computation. Let P, be a projection operator cor-
responding to the computation being complete (or ‘“halt-
ing”), and P;=1— P, be the projection operator corre-
sponding to the computation being incomplete (‘“not halt-
ing”). p,(h|b) =trPyp,(b) is the probability at time ¢
that a measurement will reveal the computation to be
complete. The different results, r, of the computation
correspond to projection operators, Pou(r), Pou(r)
=Pl (r), Pou(r)Pou(r') =8,+Pou(r). The probability

Hn(r)=Hy) € Hp : Pou (P PLUW W) =PyU) |y), Vi=0}.

that the computation is complete at time ¢ and gives the
result 7 is

p,(r,hlb) =trP0ul(r)Phpy(b)Ph . (3)

For a conventional computer, for example, (0) corre-
sponds to plugging the computer in, (1) to inputting a
program, (2) to letting the machine run, and (3) to
checking if the computation is complete, and if it is, to
getting the answer. Q can compute the values of a func-
tion f if, when prepared in the initial state po(b) corre-
sponding to an input b for which f is defined, measure-
ment at some later time has a nonzero chance of reveal-
ing the computation to be complete, and to give the out-
put f(b). That is, p,(h|b) >0 for some ¢, and for all
such ¢,

The conditions of Eq. (4) describe a computer that, if it
gives a result, always gives the right one. Less stringent-
ly, and more realistically, one can ask that the computer
give the right result with probability | —¢, where € < +.
Sufficient repetition of a computation then allows the
identification of the correct result to any desired degree of
confidence. In the results that follow, the appropriate ex-
tension to such probabilistic computers will be given
parenthetically. That is, the quantum system can com-
pute f(b) if, when programmed with the input b, at some
later time it reliably gives the result f(5) (where reliabil-
ity may involve repeating the computation several times).

The account of quantum-mechanical computation
given above, though very general, has nontrivial conse-
quences. In particular, although U(z) is in general an
operator on an infinite dimensional Hilbert space, and
need not be diagonalizable, the restrictions that Q have a
nonzero chance of completing the computation, and that
a computation that halts gives the proper output, imply
that the operator U(¢) possesses a block diagonal form.
First, look at the set of all states |¢) € # of Q that never
result in a complete computation:

#i=llo) e 7# . PRUW | ¢)=U()|¢), Ye=0}. (5)

#y is a subspace of #, and is invariant under the action
of U(t). The orthogonal subspace #, =% is composed
of states that can give a completed computation for some
t.

Each possible result for a completed computation also
corresponds to an invariant subspace:

(6)

# 1 (r) is the invariant subspace composed of states that eventually give a complete computation with the result ». The
corresponding invariant subspace for computers that give the correct result with probability 1 — e is spanned by states

|x) € #4 such that

HPout M PLUWM DN P UM P2 =1—¢, Vi=0.

(7

The requirements that the quantum computer, when programmed with the input b, have a nonzero chance of halting
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at some time, and halt only on (usually on) the output
f(b), imply that the density matrix po(h) corresponding
to the program state b must be a mixture of states that lie
at least partly in the space #,(f (b)), with the remainder
lying in the space #j;. The subspace HcompS 7 ex-
plored by Q in the course of all possible computations is
therefore equal to 7{5®Zr5range(f) x#,(r). The uni-
tary time evolution U(¢) possesses a block diagonal form
Udiag(t) on # comp, Where each block gives the action of
U(t) on an invariant subspace in the direct sum decom-
position of 7 comp.

In short, if a quantum system is to compute, each com-
putation must have some chance of reaching completion,
and when complete, must reliably give the correct result.
Consequently, the Hilbert space of the system possesses
invariant subspaces that correspond to each complete
computation, and to computations that never halt. The
system’s unitary time evolution operator them possesses a
block diagonal form in which each block corresponds to
the time evolution within an invariant subspace.

The unitary time evolution for a quantum computer
possesses a simple diagonal form. Can one decompose
the program states of the computer in terms of this diago-
nal form? From the results presented above, the diagonal
decomposition of an input state po(b) determines im-
mediately whether the computer halts on the input b, and
if it halts, what its output is. Determining the diagonal
decomposition of an input state is therefore at least as
hard as performing the computation for which the input
state is the program.

If the system in question is capable of universal digital
computation, the situation is worse. It is well known
from the theory of computation that there is no method
that in a finite amount of time tells one whether a univer-
sal digital computer halts on a given input [8]. For such
a system, the diagonal decomposition of program states is
uncomputable.

More formally, let Q be able to compute the function
T(b), where T(b) is the output of a universal computer
or Turing machine given the input . T(b) is undefined
if the computer fails to halt on input . The unitary evo-
lution of Q, U(t), has a block diagonal form Uging (1), in
which each block corresponds to the action of U(¢) on the
invariant subspaces, 7, the set of states that never halts,
and %,(r), the set of states that halts only on (reliably
on) the output r, for all r such that r =T(b) for some in-
put b. Possession of the diagonal decomposition of po(h)
tells one whether p,(h|b) > 0 for some ¢, and the result r
for which p,(r|h,b) =1Ip,(r|h,b) = 1—¢l. So posses-
sion of the diagonal decomposition of po(b) for all b gives
the solution of the halting problem, and allows one im-
mediately to evaluate 7(b), for all b. This is impossible
[10].

A straightforward example of the uncomputability of
the diagonal decomposition of program states for a quan-
tum computer can be seen in Benioff’s quantum computer
[1]. The program states of the computer correspond to

pure states |5), which over a period of time At evolve to
the state U(Ar)|b)=|Y (b)), where Y(b) is the logical
state into which b evolves over a single machine cycle of a
digital computer. Y must be a one-to-one function, i.e.,
such a computer must be logically reversible [4]. Logi-
cally reversible computers have a special “‘halt” flag,
which when raised indicates the completion of the compu-
tation. P, (Pj) projects out the space of states in which
this flag is (is not) raised. #j can be defined as above,
and is spanned by states in the course of whose evolution
the halt flag is never raised. The question of whether a
program state |b) lies in % or not is unsolvable in gen-
eral.

One can go further. It is not difficult to show that
U(Ar) is wholly diagonalizable, with both a discrete and
a continuous spectrum, and that the state |b) can be
decomposed in terms of eigenvectors whose eigenvalues
fall in the discrete part of the spectrum if under repeated
application of Y, b returns to itself: Y™(b) =5 for some
m. If b never returns to itself, then |b) can be decom-
posed in terms of eigenvectors whose eigenvalues fall in
the continuous part of the spectrum.

But the answer to the question of whether a computa-
tional state of a universal digital computer ever returns to
itself or not under the computational dynamics is uncom-
putable; the ability to answer this question translates into
the ability to solve the halting problem. In fact, a prefix
can be adjoined to every program for a logically reversi-
ble computer that causes the resulting program to return
to itself if and only if the original program halts. As a re-
sult, in Benioff’s computer, there is no effective procedure
that allows one to discover whether an arbitrary program
state |b) is to be decomposed in terms of the discrete or
the continuous part of the spectrum. (Of course, one can
usually discover for some program states whether they re-
peat or not. It is simply that there is no effective pro-
cedure for discovering for all program states whether
they repeat.) The diagonal decomposition of the program
state is uncomputable.

In conclusion, if a quantum system is to compute, one
must be able to program it, verify that the computation
has been completed, and extract the results of the compu-
tation. These requirements imply that the time evolution
operator for the system possesses a block diagonal form,
where each block corresponds to an invariant subspace of
Hilbert space made up of states either that never halt or
that halt on a particular output. The knowledge of how a
given input state overlaps with these invariant subspaces
translates directly into the ability to tell whether or not
the quantum computer halts on that input, and if it halts,
what its output is. Obtaining this knowledge is therefore
at least as difficult as evaluating the computation for
which the input is the program. Since there is no algo-
rithm that tells whether or not a universal computer halts
on an arbitrary input, one cannot in general obtain the
knowledge of the decomposition of input states of such a
computer in terms of invariant subspaces. (The decom-
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position of some inputs can always be obtained, of course,
just as the outputs of some programs can always be eval-
uated. But there is no algorithm that tells which inputs
these are.)

These results have the following consequences for the
attempt to reduce knowledge of the world around us to a
knowledge of fundamental physics and its consequences.
Suppose that one has a ‘‘theory of everything,” such as
superstring theory, that purports to explain the underly-
ing quantum-mechanical dynamics of our Universe. Sup-
pose that one has managed to obtain the theory’s spec-
trum: That is, one has obtained the eigenvalues and
eigenvectors of the time evolution operator—its diagonal
form. Suppose further that the Universe, or some part of
it, is capable of computation, defined either narrowly as
digital computation or broadly as information processing
in general. Then to decompose computational states of
the Universe in terms of the eigenstates of the time evolu-
tion operator is as difficult as determining the end result
of such computation. If the Universe is capable of
universal digital computation, then it may be impossible
to give the spectral decomposition of even the simplest
states. A theory of everything, even if correct, is not
necessarily an effective theory of the part of the Universe
that can compute.
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