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Nonlinear Rheology of Wormlike Micelles
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Certain viscoelastic surfactant solutions show unusual nonlinear rheology: In steady shear, the shear
stress saturates to a constant value while the first normal stress increases roughly linearly with shear rate
over several decades. Here we explain this behavior in terms of the "reptation-reaction" model for the
dynamics of reversibly breakable, polymerlike micelles. The constitutive equation for this model leads to
a liow instability of shear-banding type. The limiting shear stress is predicted to be a*=0.67G& (with
Gp the plateau modulus), in quantitative agreement with experiment.

PACS numbers: 83.50.Fc, 05.40.+j, 36.20.Ey

In several aqueous surfactant systems, the amphiphilic
molecules are known to aggregate reversibly into long,
Ilexible wormlike micelles [1]. These can become entan-

gled leading to viscoelastic phases, which in many
respects resemble semidilute polymer solutions. Such
phases have particularly interesting (low behavior (rheol-

ogy), and this has been the subject of extensive theoreti-
cal and experimental study in recent years [1—10].

Unlike conventional polymers, micelles are reversibly
breakable and this has profound consequences on the
mechanism for stress relaxation in these materials [7,8].
A model for the dynamics of entangled micelles has been

proposed [7], which invokes the conventional reptation
mechanism [11], in which each polymer is viewed as
effectively confined to a "tube" from which it can escape
only by a snakelike motion. The reptation process is then

coupled to a set of reaction equations describing the re-

versible scission and recombination of chains. The linear
response function G(t) for stress relaxation following a

small step strain can then be calculated [7-91. In the fast
breaking limit, where scission reactions are frequent on

the time scale of reptation, relaxation is predicted to ap-
proach a pure Maxwell form, G(t) =Gpe 't', where Gp
is the plateau modulus and z a relaxation time of order
(zdzt, ) ' where zd is the time scale for reptation and zb
that for micellar breakdown [7-9].

The pure Maxwell behavior predicted by the model has
been observed, in some cases with an accuracy not
matched by any other class of materials [2-5]. The ori-

gin of the single relaxation time is a form of motional
narrowing: On the (rapid) time scale of breaking, the

system forgets all information about the disposition of
chain ends with respect to any particular segment of tube.
Stress relaxation occurs when a chain end passes through
the given tube segment; in the fast reaction limit, the
same decay rate governs all tube segments in the system.
At very short time scales (of order zb) there are depar-
tures from the Maxwell form, which can be fitted using
the numerical solution of the model [8].

Thus the reptation-reaction model of Ref. [7] seems to
account rather well for the observed linear viscoelastic

spectrum of entangled micellar solutions. However, the
real test of entanglement theories of viscoelasticity lies in

the prediction of nonlinear behavior; for micelles this can
be spectacular in both transient and steady Ilows [4-6].
Various studies of transient effects have been made, but
only recently have detailed results for the steady-shear
response of a viscoelastic surfactant solution become
available [5]. The nonlinear response of a material is

governed by its constitutive relation, which determines
the stress at time t in terms of the flow history over ear-
lier times t'& t. In what follows we restrict our attention
to steady shear for which the flow history is especially
simple.

A constitutive scheme for reversibly breakable chains
was proposed, but not solved, in Ref. [10]. The stress
tensor is written as

8 = —", Gp [W ——,
' 1],

where W=(uu) is the (tensorial) second moment of the
orientational distribution function for tube segments, and
I is the unit tensor. For steady flow, the quantity W obeys
[10]

f+ OO

W(t) =& %exp[ —(t —t')$( v)]()(t t')dt'. —

This equation is derived by considering the creation and
destruction of stress elements (tube segments). % =1/z
is the rate of creation of new tube segments at times t' & t

by reptative motion of chain ends, whereas X) =1/z+t is

the death rate, which has contributions both from repta-
tion and from "retraction. " Retraction arises because a
tube under steady flow is subject to fractional increase in

length per unit time v =Nl K, with K the velocity gra-
dient tensor [11]. The chain retracts to maintain con-
stant tube length (the "first relaxation process" of Doi
and Edwards [11]), thus losing the tube segments at a
rate v. Finally, Q(t —t') is the stress contributed by an
element of tube created at t' & t, which has been both ro-
tated and stretched by the flow over the intervening time.
This is written as a surface integral over the unit sphere
[10]
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where E(g) =exp[K(] is the deformation tensor over a
time interval (. For simple shear Aow along the x direc-
tion with the gradient in y, the velocity gradient is
K = y'e'~ey.

Equation (1) exploits the fast averaging process (on
time scales zb) to drop any dependence of the birth and
death rates (%,2)) on the individual tube segments in-
volved. Therefore the equation is restricted to the fast re-
action limit, and to shear rates y small compared to rb
The other main assumptions are that the retraction pro-
cess is instantaneous, and that there is no direct influence
of shear rate on the rate of micellar breakage [10]. Fi-
nally, our expressions for the dependence of 8 and 2) on
v are not quite exact [10], but we have checked that our
predictions are insensitive to small changes in the forms
used.

The shear stress o =S~y is plotted as a function of
shear rate in Fig. 1. This shows a maximum in shear
stress o* at a shear rate j ~. This maximum can be un-
derstood as follows. As a tube segment is subjected to
greater and greater shear deformation, the stress in it, as
determined by Eq. (2), tends to a constant value. This
prevents the total shear stress in the sample from increas-
ing indefinitely with higher shear rate. Meanwhile, the
death rate due to retraction does increase without limit,
so tube segments are renewed faster, causing a to fall.

The decreasing shear stress at y & j ~ means that steady
shear Aow in this region is unstable [12]. However, this
behavior cannot persist to infinite shear rates, and eventu-
ally there must be an upturn in the shear stress curve at
flow rates beyond the range for which the model applies
(see dashed curve in Fig. 1). We denote the upper shear
rate at which S y again reaches o * as y2. Steady
Couette flow in the regime j ~

&& y'&& y2 can only be sup-
ported if the system forms two or more "shear bands. "
These are layers of high- and low-shear-rate material (of
equal shear stress) which coexist at volume fractions ar-

ranged to match the imposed macroscopic shear rate. At
the interface(s) between bands, the shear stress and the
component of the normal stress perpendicular to the in-
terface are both continuous [12].

In fact, a similar shear-banding instability is predicted
in ordinary polymer melts and solutions. Though not yet
observed directly (for reasons discussed at the end of the
paper) it has been proposed as the origin of the so-called
"spurt eA'ect" [12]. The shear stress arising in the shear-
banded region could in principle lie anywhere between n. *

and the local minimum of the shear stress curve visible in

Fig. 1. In pipe flow, the value of a is selected by the
boundary condition on the normal stress [12]. However,
for flow in either a Couette cell or a cone-and-plate ap-
paratus, there is no such selection mechanism; we there-
fore expect that, as the shear rate is slowly increased, the
flow remains stable up to the maximum shear stress a*
[13]. ln this case, the observed shear stress will follow
the short-dashed line in Fig. l, with a horizontal plateau
in shear stress at o. =o*=0.6760. The plateau sets in at
shear rate j ~

=2.6r
Figure 2 sho~s the predicted shear stress alongside the

recent data of Pehage and HoAman [5] on an aqueous
solution of cetylpyridinium chloride/sodium salicylate
(CPyC1/NaSal: 100 mM/60 mM). This system has been
very carefully characterized and has a clear Maxwell
spectrum in linear response, indicating rb&&rd as re-
quired. The relaxation time r =8.5 s and the plateau
modulus 60 =31.2 Pa are independently found from
linear response measurements, so there are no free pa-
rameters in the fit. The agreement between theory and
experiment is clearly excellent. Note that the last few ex-
perimental data points in Fig. 2 seem to show an upturn
from the plateau, suggesting that the shear rate y2 may
have been reached. This could be checked by looking for
hysteresis in the shear stress (following the lower branch
in Fig. 1) as the flow rate is decreased from values above

4

f2'
We now consider the behavior of the first normal

stress, W] =5 —Syy. Experimentally, this shows a
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FIG. l. Log-linear plot of reduced shear stress cr/Go against
reduced shear rate j~. Long-dashed line: the turnup at high
shear. Short-dashed line: the measured shear stress in the un-
stable region.

FIG. 2. Log-linear plot of reduced shear stress cr/Go against
reduced shear rate yr. The solid curve is the prediction of the
model with no adjustable parameters. The data are from Ref.
[5]. Note the apparent turnup at high shear.
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cT= 4 Gtijz„NT, N)= —, Go(yz„) N'T
—2. && ~ 2 —2 (3)

Here N~ is the number of tube segments per chain, and
z„=zd/NT the Rouse time, characteristic of the decay of
stretching modes of a chain within its tube (i.e., the first
relaxation). These expressions are expected to apply for
shear rates y» r, 'NT, they also assume that the number
of statistical segments between entanglements obeys
N, ~ NT [13]. The prefactors quoted above are those for
an exponential length distribution [1] rather than mono-
disperse as considered in Ref. [13];NT and z„refer to the
mean chain length.
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FIG. 3. Log-log plot of reduced shear and normal stresses
against reduced shear rate. The solid curves are predictions of
the model with a =0.53 (the upper line is normal stress; the
lower is shear stress). Dotted curves are obtained by also as-
suming AT=25. The points are experimental data from Ref.
Is].

roughly linear increase with shear rate in the shear-
banded region (shown in Fig. 3). At the upper end of the
range, normal stresses are obtained that are very large
compared to those measured for shear rates near
(where N~ =Go). The near-linear dependence is quite
consistent with the shear-banding mechanism, so long as
we adopt a model of the high shear phase (of shear rate
y2) for which the value of N~ is indeed very large com-
pared to Go. Well within the banded region, the normal
stress will then increase linearly, in proportion to the
volume fraction of high shear material required to main-
tain the imposed overall Aow rate.

To proceed further, we need to model the high shear
phase more quantitatively. This is dificult, and necessi-
tates several assumptions beyond those used above. How-
ever, for unbreakable chains, a model has recently been
proposed which does predict the form of the shear and
normal stresses in the very high shear regime [13]. The
model involves a chain which at high shear is constrained
to lie in a tube aligned along the Aow. Conventional tube
models neglect any Auctuations in the position of the
chain about the axis of the tube, and so predict a mono-
tonically decreasing shear stress [14]. Accounting for the
finite extent of the chain transverse to the Aow direction,
the authors of Ref. [13] obtained the following asymptot-
ic estimates for the stresses at high shear:

We now propose that these asymptotic forms for the
stresses apply, even for reversibly breakable chains. This
is at least arguable, so long as we assume that the high
shear phase corresponds to a regime where y » r b . In
this case, the fact that the chains are reversibly breakable
may have relatively little effect: On the characteristic
time scale of chain deformation (y ) a chain typically
does not break or re-form. With this assumption, we can
calculate from Eq. (3) the high shear part of the shear
and normal stress curves explicitly, and use the results in

a fit to the normal stress data.
As mentioned previously, the data of Ref. [5] show

some turnup in shear stress at the highest shear rates. If
we set aside this part of the data, the normal stress curve
can be used to determine a parameter a =z,/z, which—crudely speaking —characterizes the average slope of
the N~ curve in the shear-banded region. (In fact, the
parameter is extracted by a least squares fit to the entire
N~ data set, excluding the last few points. ) The best fit is

shown in Fig. 3, resulting in a value of a=0.5. For con-
sistency with Eq. (I )—which assumes instantaneous
retraction —this parameter should be small. The value
found is marginal, but certainly not inconsistent, bearing
in mind that the prefactors in Eq. (3) are at best known

only to within order unity factors [13]. It is possible that
a more detailed treatment, allowing for non-negligible a
would partially smooth out the "kink" visible in the pre-
dicted N

~
curve.

The model for the high shear limit also involves a
second parameter, which we choose as NT. This deter-
mines the location of y2 at which a starts to rise from its
plateau, and Ni jumps abruptly from a linear to a quad-
ratic dependence on y. The experimental data at high
shear are somewhat ambiguous, but if the apparent turn-
up in the shear stress (Fig. 2) is a real effect, we must
have y2z =500, which then determines NT=25. (The
stresses then predicted for y ) j2 are indicated in Fig. 3.)
The result for NT is in very good agreement with an in-

dependent estimate found by analyzing the shape of the
linear viscoelastic spectrum at high frequencies [9]. If in-

stead the apparent turnup is an artifact, then y2 must still
be greater than about 500, which implies NT ~ 25.

If we accept the (tentative) idea that the reversible
breakage of chains is irrelevant at high enough shear
rates, then the consistency of our estimates for the pa-
rameters a and NT offers strong support for the model of
Ref. [13] for the high shear limit of' unbreakable poly-
mers. It is instructive to compare also with other models;
for example, fits can also be made on the assumption that
the high shear branch of the stress curves follow the
Rouse model, which describes unentangled, unbreakable
chains [111. This gives a less consistent value of a (some-
what larger than unity), and a value of NT =800, which
is unfeasibly large compared to that extracted from the
linear response spectrum [9].

In summary, we have shown that the nonlinear viscoe-
lastic behavior of an entangled micellar solution under
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steady shear [5] is fully consistent with a constitutive
equation based on the "reptation-reaction" model of the
dynamics of wormlike micelles [10]. The nonlinear be-
havior is dominated by a flow instability of shear-banding
type, which sets in at a shear rate j]= I ' where T: is the
Maxwell time of the fluid. This is the first direct evidence
for this type of instability in entangled liquids: By as-
suming its existence, we can account for the experimental
results on micelles with convincing accuracy. Of course,
many open questions remain, for example, concerning
transient phenomena (startup I]ows) as well as the details
of the behavior at very high shear.

As mentioned earlier, for conventional (unbreakable)
polymers, the Doi-Edwards theory [11] predicts a shear
stress which qualitatively resembles the solid curve in Fig.
1 for micelles. Accounting also for a turnup in the stress
at high shear rate (see, e.g. , [13]),we expect conventional
polymers to show a similar plateau region in shear stress
resulting from the same type of flow instability. Howev-
er, this has not yet been observed, perhaps in part because
of practical difhculties in studying polymers at high shear
rates. For example, in cone-and-plate work on polymer
melts, the sample is often expelled from the rheometer.
As discussed in Ref. [131, this normal stress phenomenon
may be overcome by studying highly entangled systems of
relatively low elastic modulus, of which viscoelastic mi-
cellar phases are a prime example. The presence in mi-
cellar systems of a single relaxation time also favors ob-
servation of the instability: For conventional polymers,
the shear stress maximum could be smeared out by po-
lydispersity effects [12]. Finally, micellar systems are not
subject to the risk of irreversible sample degregation
which always attends work on conventional polymers at
very high flow rates. For these reasons, we believe that
micellar systems provide an important tool for studying
the eA'ects of entanglements in flow regions not easily ac-
cessible using conventional polymers.
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