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We present a model for a Saffman-Taylor finger advancing into a viscoelastic medium, along with
solutions for the dynamics of the tip of the finger coupled to a “fractured zone.” The fractured zone is
defined as a region of the medium which the finger can penetrate, and ahead of which stress builds up,
eventually leading to fracture of the medium. The model predicts a self-sustained oscillation in the tip

velocity arising via a Hopf bifurcation.

PACS numbers: 47.20.Ky, 46.30.Nz, 47.55.Kf, 83.50.Fc

An interesting discovery that has recently attracted
considerable attention is the existence of fracture instabil-
ity in viscous fingering [1-4], a process which we term
“Saffman-Taylor fracture.” Ordinary fingering occurs
when a less viscous fluid, such as water, pushes a more
viscous fluid, such as oil. Saffman-Taylor fracture can
occur when the oil is mixed with very fine grains or
powder. These grains make the oil viscoelastic, so that it
can respond elastically to stress. If the flow of the less
viscous invading fluid is sufficiently slow, ordinary viscous
fingering still occurs. However, if the time scale 7, for
the flow is shorter than the response time 7, of the medi-
um, the process is dramatically different: The medium
fractures, and the fingers become much narrower and
split much less often [1]. In this regime the zero shear
stress, or yield stress, in the viscoelastic medium is finite
[5], unlike in ordinary fluids, for which it vanishes. Thus
the finger front can only advance when it fractures the
medium, i.e., when the fluid applies a stress to the medi-
um which exceeds some threshold.

There are several other physical systems whose dynam-
ics involve a threshold. Examples include the following:
(i) The dynamics of a grain in a densely packed granular
assembly, where each grain is surrounded by neighbors
and hence is locked. The grain does not move unless an
applied force exceeds a critical strength, after which
large-scale motion suddenly sets in [6]. (ii) The peeling
of an adhesive tape [7,8]. In the peeling process, we hear
a distinctive sound with a characteristic frequency. Thus
there exists a characteristic time, which is probably the
time required to build up the threshold stress. (iii) Dy-
namic fracture in brittle materials. The need for the
threshold in dynamic fracture of brittle materials has also
been quite convincingly demonstrated in PMMA [8]:
The displacement of a crack tip vs time exhibits steplike
behavior, suggesting that in order for the crack to ad-
vance, a critical stress must be supplied. We recognize
that an essential ingredient in the dynamics of such phys-
ical systems appears to be the existence of a threshold for
initiating the dynamical process.

The purpose of this paper is twofold. First, we propose
a dynamic model for Saffman-Taylor fracture by paying

particular attention to the dynamics of the tip of the
finger front coupled to a fractured zone, which will be
defined shortly. Second, we analyze the model equations
and show that they display one of the generic features of
threshold-induced dynamics, namely, the appearance of a
self-sustained oscillation in the front dynamics. This os-
cillation is similar to the stick-slip processes commonly
observed in the systems enumerated above. Even though
the viscous effect dominating in the experiments of Refs.
[11 and [3] might not be crucial in dynamic fracture, our
picture advanced in this paper might offer some new in-
sight into the recent observation of dynamic oscillations
in the tip velocity of a crack propagating into a brittle
material [9-11].

Consider a finger of fluid being forced into a viscoelas-
tic medium in the x direction (Fig. 1). Experimental pic-
tures of Saffman-Taylor fracture in a Hele-Shaw cell
[1-3] seem to indicate that the usual two-dimensional ap-
proximations do not hold, because the thickness of the
finger is comparable to the cell thickness. Thus we re-
gard the finger as a three-dimensional object. Far behind
the tip, the finger has a cross-sectional area X, and fluid
is being forced into it at a speed VY, for a volumetric flow
rate of Q=XVy. We assume that the tip of the finger
advances into a compliant, or “fractured,” zone of the
medium, which can be experimentally determined by
measuring the stress field distribution near the finger tip.
One may define a similar zone near the advancing front

XV

FIG. 1. A finger of cross-sectional area Z. advances into a
viscoelastic medium. When the flow rate 7, is much shorter
than the response time of the medium z,, stress builds up ahead
of the tip of a “fractured zone.” The tip position of the frac-
tured zone is denoted by x,. The fluid flux at infinity is Q.

0031-9007/93/71(6)/847(4)$06.00 847
© 1993 The American Physical Society



VOLUME 71, NUMBER 6

PHYSICAL REVIEW LETTERS

9 AUGUST 1993

in the peeling of an adhesive tape. The rest of the medi-
um is “rigid,” and the fluid cannot penetrate it. The tip
of the fractured zone is at x =x,(¢), a distance A(z)
ahead of the tip of the finger. As the finger advances to-
ward the tip of the fractured zone, the pressure needed to
keep pumping fluid into it at a rate Q increases, and
stress builds up ahead of the fractured zone. Thus A
simultaneously measures the pressure in the fluid, the
curvature of the finger tip, and the accumulated stress in
the medium: The same process which decreases A in-
creases all three. Ultimately the stress becomes so large
that the medium ahead of the zone fractures, thus ad-
vancing the zone.

We now derive the dynamic equations for the tip posi-
tion of the fractured zone, x,(z), and that of the finger
tip, or equivalently A(¢). First note that increasing x, by
dx,, while holding A fixed, corresponds to shifting the en-
tire arrangement of finger and fractured zone forward by
dx,. This increases the volume of the finger by Ze.dx,.
Holding x, fixed and decreasing A by dA corresponds to
advancing the finger into a fixed fractured zone. In order
for this to happen, the pressure must increase and so the
curvature of the tip must also increase. Thus the volume
of the finger increases by less than L.dA. We will denote
the increase by ZwA(A)dA; we may think of ZwA(A) as
the effective cross-sectional area of the finger tip when it
is a distance A behind the tip of the fractured zone. All
the complications involved in solving the free-boundary
problem for the shape of the finger are incorporated into
the function 4(A). If the fluid is ircompressible, then the
volume occupied by the finger must always increase at
the rate Q. Thus we have

0 =Xodx,/dt —ZA(A)dA/dt 1)
or

Vo=V —A(A)dA/dt , )
where Vy=0Q/Z, and we have defined V(z) to be the

rate of advance of the tip of the fractured zone,

V() =dx,/dt . 3)

As the finger tip advances relative to the fractured
zone, i.e., as A decreases, the stress ahead of the fractured
zone increases. This stress governs the rate of advance of
the tip of the fractured zone. Any reasonable constitutive
relation for a viscoelastic medium must incorporate two
regimes. For low stress levels, the medium can flow slow-
ly as a viscous fluid, so that the tip of the fractured, or
compliant, zone can advance slowly. For high stress lev-
els, the medium cannot rearrange itself on a sufficiently
fast time scale, and so it behaves as an elastic solid and
fractures. In an intermediate stress range, however, both
processes are possible: The stress is not sufficient to ini-
tiate fracture, but if fracture has already begun, then the
stress is sufficient to maintain it. We might then expect
that the speed ¥ at which the tip of the fractured zone
advances would be a function of the stress, or equivalent-
ly some function f(A), which must have at least two
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branches: a high-stress, high-speed branch f+(A) and a
low-stress, low-speed branch f_-(A). This behavior is
sketched in Fig. 2. The upper branch ends at A=Ay,
above which the stress is no longer sufficient to maintain
fracture, and the lower branch ends at A=A_, below
which the stress is so high that fracture is initiated.
(Both branches have a slight downward slope, since in-
creasing A means decreasing stress, which should slow the
advance of the fractured zone slightly.) Such a model
would be inadequate in at least two respects. First, it
offers no way of making the transition between the two
dynamical regimes—as A increases beyond A+ the veloci-
ty can only jump instantaneously from the upper branch
to the lower. Since this would imply infinite acceleration
of material, we must assume instead that the fractured
zone adjusts to changes in the stress field on a fast, prob-
ably microscopic time scale 7. This leads generically to
an equation of the form

wdV/di+V=f(). 4)

The second difficulty with a model of this type is purely
mathematical. If f(A) is multiple valued, then Eq. (4) is,
strictly speaking, meaningless. We will attend to this
problem after first investigating some simple conse-
quences of Egs. (2) and (4) and showing that it cannot
simply be ignored.

If we ignore the difficulty that f(A) is multiple valued,
then Egs. (2) and (4) comprise a complete two-dimen-
sional dynamical system specifying the evolution of the
finger as described by the two variables ¥ and A. Fixed
points of this dynamical system correspond to states in
which the tips of the finger and the fractured zone ad-
vance together at a constant speed. By setting the time
derivatives of ¥ and A to zero, we find that a fixed point
occurs at ¥'=Vq and A=A, where f(A¢) =V,. To test
the stability of the fixed point, we write V() =V,+ Ve"’
and A(t) =Ao+Ae in (2) and (4), and linearize in V
and A. This gives
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FIG. 2. The speed V of the tip of the fractured zone as a
function of A, the distance between it and the tip of the finger
front. We may also regard A as an inverse measure of the stress
in the medium ahead of the fractured zone. The lower branch
represents a slow, viscous rearrangement of the medium, while
the upper branch represents rapid, elastic fracture.
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cA=V/4(Ay) , (5)
rcl}=f'(Ao)A—l}, (6)

where the prime represents differentiation. Eliminating Vv
leads to the stability equation for o,

tol+o—f(Ag)/A(Ag) =0. (7

Since A(A) is always positive, the stability is controlled
by the sign of f'(A¢): If it is negative, then both solutions
of (7) have negative real parts, so that the fixed point is
stable. However, if Vg lies between the two branches of
f(A), then there is no fixed point. This could be rem-
edied by introducing a section of f(A) connecting the two
branches; intermediate values of Vo would lead to steady
states on this upward-sloping section, which would then
be unstable because f'(A) is positive. Even this, however,
fails to describe the onset of instability as V) is increased
to this range, since as we make this change, f'(A) be-
comes infinite.

If the dependence of V on A is given by a Z-shaped
curve, as in Fig. 2, then f(A) is multiple valued, and Eq.
(4) is therefore meaningless. We must then replace it by
an equation of the form

tdV/dt=—g(V,A), (8)

FIG. 3. Trajectories in the (V,A) plane. (a) For small Vo,
the single fixed point is stable. This represents ordinary Saff-
man-Taylor fingering, where the medium undergoes slow
viscous rearrangement in order to accommodate the slowly ad-
vancing finger. (b) For larger Vo, the attractor is a limit cycle.
In this cycle, the material alternately undergoes viscous rear-
rangement while the finger advances and stress builds up, then
fractures and releases the stress.

where g(V,A) has two crucial properties. First, it van-
ishes for A=F(V), where F(V) is the inverse function of
f(A). Note that while f(A) is multiple valued, F(V) is a
single-valued function. Hence, we have

gV, A=F(V))=0. )

Second, V must increase with time for A < F(V) and de-
crease for A> F(V). Thus g(V,A) must be an increasing
function of A at A=F(V). Differentiating (9) with re-
spect to V gives

0g/8V)a=rany+F' (V) (8g/0A)a=rw) =0, 10)

a relation which will soon prove useful. Since dg/dA is
positive in (10), we find that dg/dV = —(9g/0A)F'(V)
has the opposite sign as F'(V), i.e., as df/ dA.

Now let us redo the linear stability analysis for (2) and
(8), requiring only that g have the minimal properties
discussed above. The fixed point has V=V and A=A¢
=F(Vy). Again setting V=Vo+ Ve and A=Ag+Ae”
and linearizing gives

cA=V/A(Ao) , (1)
oV =—(3g/dV)V —(8g/dA)A
=(9g/0A) [F'(Vo)V —Al, (12)

where the partial derivatives are evaluated at (Vg,A).
Putting (11) and (12) together, we find the quadratic
equation for o,
62— (39g/0A)F' (Vo o+ 2804 —¢ (13)
A(Ao)
whose solutions are given by

o=—{(3g/dA)F' (V)
2t

+/(82/8A)2[F' (V)12 — 41 (3g/9A)/A(Ag)} .
(14)
Since both A(A) and dg/dA are positive, this displays the
hallmarks of a Hopf bifurcation [12] as we increase Vo
from the region where F'(Vp) <O to the region where
F'(Vy) >0: o has an imaginary part, and a real part
which changes sign from negative to positive.

Our results are most easily seen by examining the A-V
phase plane, as sketched in Fig. 3. To the left of the
curve A=F(V) all trajectories move upward toward
larger V, while trajectories to its right move downward.
In Fig. 3(a), the input speed V is small enough for the
steady state to be stable. All trajectories quickly reach
the fixed point. In this regime, fluid is being pumped into
the finger slowly enough that the medium is able to rear-
range itself by viscous flow in order to accommodate the
advancing finger; the system operates on the lower,
“viscous rearrangement” branch of the multiple-valued
V=f(A) curve. In Fig. 3(b), we have increased Vo so
that the steady state is now linearly unstable. A trajecto-
ry which starts close to the fixed point rapidly spirals out-
ward and converges to a limit cycle. If the response time
7 is small, then this limit cycle is a classic relaxation os-
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cillation. To trace the physics of the oscillation, let us
start at the point zg, where the limit cycle crosses the
curve V=f_(A). At this point, the medium is undergo-
ing viscous rearrangement, and so the compliant zone is
advancing at a low speed V. However, the finger is ad-
vancing more rapidly, so the distance A between it and
the tip of the zone is decreasing. Consequently, stress
builds up ahead of the tip of the zone. Eventually, A de-
creases to the value A— at which the stress is so high that
fracture begins. The speed V of the zone tip rapidly in-
creases to f4(A), which is a true fracture regime. As the
tip of the zone advances rapidly, the finger continues to
advance at a speed close to V. Thus the tip of the zone
outraces the finger, A increases, and the stress ahead of
the fractured zone is relieved. When A increases to the
value A4, the stress is no longer sufficient to maintain
fracture, so the speed V rapidly drops to f—(A) as the
medium reverts to viscous rearrangement, thus complet-
ing the cycle.

[t is clear from Fig. 3 that once the oscillation sets in,
it very quickly loses all memory of the unstable steady
state. If 7 is small, then the transitions between the
upper and lower branches of f(A) happen rapidly, so the
period of the oscillation is dominated by the motion of the
phase point along these branches. Thus to leading order
in 7, the period 7 is given by

Ay

1 ]
f+QA)—=Vy  Vo—f-(A)

T= AWA)da.  (15)

A

[f we increase the rate Vo at which fluid is being pumped
into the system, then the period changes:

Ay f+(A)—f—(A)
dT/dVy=
/dVo ‘fA‘ [f+(A)—V0]2[VO_f—(A)]2

x 2Vo—f+(A) —f-(A)]A(A)dA. (16)

Near the onset of instability Vg is close to f—(A-), mak-
ing the integrand negative. Thus as Vg is increased from
the onset of oscillation, the period of the oscillation de-
creases until Vo reaches a rather high value, about the
average of the viscous and fracture speeds of the compli-
ant zone tip, for which the period 7" might become solely
a material constant, independent of V¢ as in dynamic
fracture [13]. In the context of the peeling of an adhesive
tape, one literally hears this behavior.

In conclusion, we have posited a simple model for
Saffman-Taylor fracture, and found that its dynamics are
controlled by a threshold, and that they show a self-
sustained oscillation, as is generic in threshold-induced
dynamics. Our model shows a sharp transition from a re-
gime dominated by viscous flow of the viscoelastic medi-
um to one characterized by periodic elastic fracture, as
observed by Lemaire er al. [1]. This transition takes
place as the rate at which the inviscid fluid is pumped
into the finger is increased past a critical value, i.e., as the
time scale for advance of the finger becomes shorter than
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the time scale for viscous relaxation of the medium. In
the fracture regime, the tip of the fractured zone of the
medium advances in an oscillatory fashion [9], as stress
alternately builds up during a period of insufficiently rap-
id viscous rearrangement and is relieved by fracture. We
find that in order to obtain this behavior, our model must
include a “bistable” range of stress, which is sufficient to
maintain fracture once it has begun, but not sufficient to
initiate it. Notice that the signature of the fracture insta-
bility in our model is the onset of a self-sustained oscilla-
tion in the tip velocity, which could be observed experi-
mentally. Moreover, we predict that once the oscillation
has set in, its period should decrease as the driving veloci-
ty Vo is increased.

We wish to thank C. Lobb, J. Maher, and H. Van
Damme for discussion of their experiments as well as R.
Blumenfeld for discussion for stick-slip dynamics and D.
Ou-Yang for discussion on dynamics of peeling. This
work is partially supported by the National Science
Foundation through the EPSCoR program administered
by ASEND in North Dakota (D.A.K.), the Petroleum
Research Fund (D.C.H.), and the NSF-IUCRC program
through the Center for Polymer Science and Engineering
(D.C.H.).

[1] E. Lamaire, P. Levitz, G. Daccord, and H. Van Damme,
Phys. Rev. Lett. 67, 2009 (1991); for earlier works, see,
Europhys. Lett. 5, 25 (1988); C. R. Acad. Sci. Ser. 2 309,
11 (1989).

[2] H. La Roche, J. F. Fernandez, H. Octavio, A. G. Loeser,
and C. Lobb, Phys. Rev. A 44, R6185 (1991).

[3]1 H. Zhao and J. Maher (unpublished).

[4] For earlier observation of similarities between fingering
and the fracture patterns in brittle materials, see F. Spae-
pen, Acta Metall. 23, 615 (1975); C. A. Pampillo and A.
C. Reimschessel, J. Mater. Sci. 9, 718 (1974).

[51 H. Van Damme and E. Lemaire, in Statistical Models
for the Fracture of Disordered Media, edited by H. J.
Herrmann and S. Roux (North-Holland, Amsterdam,
1990), p. 77; see also Hydraulic Proppant Fracturing and
Gravel Packing, edited by D. Mader (Elsevier, New
York, 1989).

[6] For a review see, e.g., H. M. Jaeger and S. Nagel, Science
255, 1523 (1992).

[71J. L. Ericksen, Introduction to the Thermodynamics of
Solids (Chapman and Hall, London, 1991).

[8] E. C. Aifantis, in Patterns, Defects and Material Insta-
bilities, edited by D. Walgraef and N. M Ghoniem
(Kluwer, Dordrecht, 1990), p. 221.

[9] J. Feinberg, S. Gross, M. Marder, and H Swinney, Phys.
Rev. Lett. 67, 457 (1991).

[10] R. Ball and R. Blumenfeld, Phys. Rev. Lett. 65, 1784
(1990).

[111J. S. Langer, NSF-ITP Report No. 92-14, 1992 (to be
published).

[12] See, e.g., H. G. Schuster, Deterministic Chaos (VCH,
Germany, 1988), p. 145.

[13] For dynamic fracture, the period of oscillation seems to
be independent of the speed of the crack [J. Sethna
(private communication)].



