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Critical and Topological Properties of Cluster Boundaries in the 3D Ising Model
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We analyze the ensemble of surfaces surrounding critical clusters at 7' = 7. in the 3D Ising
model. We find that Ny (A), the number of surfaces of genus g and area A, behaves as A%(9e =44,
We show that u is constant and z(g) is approximately linear; the sum Eg Ny (A) scales as a power of
A. The cluster volume is proportional to its surface area. We discuss similar results for the ordinary
spin clusters of the 3D Ising model and for 3D bond percolation.

PACS numbers: 05.50.+q, 11.17.4y, 64.60.Ak

It is a long-standing hope in theoretical physics that
it is possible to find a formulation of three-dimensional
phase transitions dual to the usual order parameter field
theory. Such a description recasts the dynamics in terms
of fluctuating surfaces. In the 3D Ising model such a
reformulation is indeed possible on the lattice [1], and
the relevant problem is the existence of a continuum limit
for the surface theory. Despite much theoretical effort,
real progress in this direction has been slow and difficult.
In order to provide some experimental data to perhaps
point in the right direction, we embarked on a numerical
study of surfaces in the 3D Ising model.

The main obstacle to a continuum description of free
random surfaces is the well-known fingering instability
of surfaces in embedding space of dimension d > 2 [2].
One motivation for our study was to see if the fingering
instability plagues Ising surfaces, to see if their natural
mutual avoidance stabilizes the fingering instability. In
fact, one could regard our investigations purely as a study
of ensembles of self-avoiding random surfaces, with the
Ising model as a convenient tool for generating them [3,4].
We searched for scaling properties in the distribution of
surfaces of fixed genus, to see if a scaling limit could ex-
ist. We will present data that show nontrivial topology-
dependent scaling behavior for self-avoiding surfaces in
3D (for previous work, see [5]).

Contrary to the widely held belief that a phase tran-
sition is characterized by nested clusters of ordered do-
mains of all possible sizes, it has been shown [6] that the
distribution of domain boundaries in the 3D Ising model
does not scale at criticality. Rather, as the critical point
is approached from low temperatures, islands of flipped
spins (which we shall call minority clusters) merge into

a large percolating cluster at a temperature T, well be-
low the critical temperature T,. The dynamics is then
dominated not by the entropy in the cluster distribution
but by the entropy of configurations of the percolating
cluster. Moreover, no local order parameter of the Ising
model reflects this percolation transition.

However, there exists a cluster representation of the
Ising model due to Fortuin and Kasteleyn (FK) [7] which
captures the critical properties of the model, in particu-
lar that the divergence of the correlation length is related
to the percolation of the FK clusters. These clusters are
formed by adjoining neighboring spins with a probability
1 — e~ 28 if they are equal. The FK representation led
Swendsen and Wang (SW) to propose a Monte Carlo al-
gorithm that partially defeats critical slowing down [8].
In our simulations we have used the SW algorithm. We
studied the self-avoiding surfaces bounding both minority
spin clusters (at Tp) and FK clusters (at T;). To explore
further the possible realizations of self-avoidance, we also
simulated the surfaces defined by pure bond percolation
[9]. It should be emphasized that the “bosonic” surfaces
defined by Ising domain walls are not the same as the
“fermionic” surfaces that arise in the surface reformula-
tion of the lattice Ising model; nevertheless, we expect
that they should capture the characteristic features of
any critical surface theory of the 3D Ising model.

We ran a medium sized simulation, using roughly four
months of time on RISC workstations. We have ana-
lyzed Ising configurations on a 643 body centered cubic
(bee) lattice at the Curie temperature, 8¢ = 0.0857, us-
ing 0.3 x 108 iterations. We also collected data on simple
cubic lattices of size 323 and 643 at the Curie temper-
ature, fc = 0.221651 (performing about 6 x 10% and
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0.25 x 10° iterations, respectively). Data were also taken
at the minority percolation point 8, for the Ising model
(where we also studied many different lattice sizes, going
from 323 to 100%) and for pure bond percolation on the
simple cubic lattice. All of our error analysis has been
done by using jack-knife and binning techniques. For
more details see Ref. [10].

On the bcc lattice, we coupled with equal strength both
the six nearest and eight next-nearest Ising spins so that
only three plaquettes of the dual lattice meet along a dual
link. Since surfaces built this way on the bcce lattice are
naturally self-avoiding, computing the genus of the dual
surface is trivial. The number of handles g is obtained
through the Euler formula 2 — 2g = V — L + P, where
V, L, and P are the number of vertices, links, and pla-
quettes, respectively, on the dual surface. On the other
hand, the genus definition on the simple cubic lattice is
more problematic, and requires a few choices (which we
discuss in detail in Ref. [10]) to resolve ambiguities where
surfaces self-touch.

Overall, for the FK clusters we obtained our best re-
sults on the bcc lattice. We found a scaling law for the
number of clusters of volume Vg, N(Vy) ~ V7; the ex-
ponent 7 = 2.22 [11] with a large systematic error which
could be as high as 3% [10]. We also measured the quan-
tity Ac, which counts the number of cluster sites on the
boundary, and found that asymptotically it was propor-
tional to the cluster volume V;.

Figure 1 shows this dependence on the simple cubic
lattice. We see that for very small volumes, the lattice
regularization constrains V,; to equal A and for interme-
diate volumes, there is a small deviation from linear scal-
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FIG. 1. In(Va/Aa) vs In(V4) for FK clusters on the L = 64
simple cubic lattice.
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ing (as some interior sites begin to appear). The plateau
that appears around V;; = 3000 indicates the onset of
scaling regime where A o< V. The growth just at the
end of the plot is due to the largest cluster, which wraps
around the lattice and merges with itself to form extra
interior points. This plateau is the first indication that
the surfaces are not smooth and are unstable towards
the formation of quasi-one-dimensional objects. The ob-
served proportionality of V) and A is well known in the
context of pure percolation in two and three dimensions
[9]; to our knowledge it has not been measured for 3D
Ising clusters. Note that in the well understood case of
the 2D Ising model (which has a nonpathological contin-
uum behavior) the cluster perimeter is not proportional
to the area spanned by the cluster.

Turning to the analysis of the topology of the dual sur-
faces bounding the clusters, we consider the distribution
Ng(A), where g is the genus and A is the dual surface
area. In Fig. 2, we present our data for genus 5 along
with a best fit to the functional form

Ny(A) = CgAw(g)e—u(g)A . (1)

The fit is superb. One of our main results is that this
functional form fits our data very well for g > 2 up to
about g = 20 where our statistics become poor. The
“cosmological constant” u is found to be independent of
the genus for g > 2 (Fig. 3). The value = ! =114+ 3 is
proportional to the average surface area (in lattice units)
per handle.

In Fig. 4 we plot the exponent z(g) as a function of
the genus. Once again after a transient region for small
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FIG. 2. The number of genus 5 surfaces at 7, as a function
of dual surface area A for FK clusters on the L = 64 bcc
lattice, with a best fit to the functional form given in Eq. (1).
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FIG. 3. The dependence of the cosmological constant p(g)
on genus for FK clusters on the L = 64 bcc lattice at T..

genus (g = 0 — 4) we find an almost linear behavior in
the region g = 5 — 15 with a slope of 1.25 £ 0.1. The
deviations from linearity are small, and in our observa-
tion window they can be fitted with an effective exponent
correction of order 0.1, or with logarithmic corrections.
These make an estimate of the large genus behavior of
z(g) rather difficult. The region we are observing is still
transitory, and we cannot exclude that the asymptotic
slope of z(g) could equal one at large g. This value would
be expected if the handles were completely uncorrelat-
ed as for a Poisson distribution Py(A) = J(uA)%e™#4.

The results presented above have also been analyzed
for the simple cubic lattice. The data agree with those of
the bcec lattice here and point to a good universal behav-
ior. The main discrepancies can be traced to the short
distance ambiguities which plague the definition of the
dual surfaces on the simple cubic lattice. The scaling
exponents are close for the two lattices. The difference
among some nonuniversal quantities, e.g., u~! ~ 60 on
the simple cubic lattice, can be qualitatively understood
from the ratio of the number of plaquettes of the respec-
tive Wigner-Seitz cells.

We will discuss in detail in [10] the analogous features
both for the percolation of minority spins of the Ising
model and for noninteracting bond percolation. The gen-
eral picture is interestingly the same; indeed, the slope
dz/dg for bond percolation is compatible with the value
for FK clusters. However, the slope dz/dg ~ 0.7 0.1
in the range g = 3 — 40 for Ising minority spin percola-
tion. The same caution as before applies to these slope
values. Another interesting result is the similarity of the
measured area scaling exponents (7 = 2.18 £ 0.05 upon
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FIG. 4. The dependence of the exponent z(g) (extracted
from the fits by Eq. (1)] on genus for FK clusters on the
L = 64 bcc lattice at T.

extrapolation to large lattices) as well as the linear rela-
tion between cluster volume and area at the respective
critical points (FK clusters at T, and minority spin clus-
ters at Tp). The difference of the z(g) estimated for the
two interacting theories we are studying is interesting.
It is possible that in the asymptotic region one will get
1.0 for the slope in both cases, but the large difference of
the measured exponents (which are, on the contrary, very
similar when looking at FK clusters and at bond percola-
tion) says at least something about finite size corrections,
i.e., about the nature of the interaction. Apart from this
effect these results indicate that the cluster distribution
scaling is rather insensitive to the average cluster density,
which is about 10 times less for minority spin clusters.
At least partially we may be observing some universality
of different definitions of self-avoiding random surfaces.
We regard the outcome of our topological studies and
the behavior V; ~ Aq as a strong indication that the
cluster boundaries are in a “branched” phase. The topo-
logical evidence suggests that the surfaces grow fingers
which reconnect with a fixed probability per unit area.
The cosmological constant of the surfaces of fixed genus
is nonzero at the critical point. Adjusting the temper-
ature away from criticality will only increase u, as the
large surfaces are exponentially suppressed (apart from a
few surfaces of the size of the lattice above the percola-
tion threshold). Therefore there is no relevant parameter
in the theory that could be tuned to allow large surfaces
of low genus. One can imagine that some additional pa-
rameter (e.g., one that couples to the Euler density of the
lattice surfaces, which depends on all the spins in a fun-
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damental cell) could be fine-tuned to multicriticality (for
another approach see [4]). Then there would be the pos-
sibility to have a scaling theory at fixed genus. However,
Huse and Leibler [3] have argued that a phase transition
to a droplet phase intervenes, in which the topological
coupling favors breaking large surfaces into many tiny
spheres.

Finally, in order to get a more accurate description
of the geometry of the minority clusters, we analyzed
two-dimensional slices of the lattice to obtain the dis-
tribution of cluster cross sections as a function of their
perimeters. Below the critical temperature T, the distri-
bution drops off at a scale of the order of a few lattice
spacings, providing further indication that the surfaces
are composed of small, highly interconnected tubes. Re-
markably, around T, (recall that the surfaces have long
since percolated at T, < T.) we find very good scaling
behavior which must be entirely dominated by the cross
sections of the large percolated cluster. Since one may
view the percolated cluster as describing the Euclidean
(transfer matrix) time evolution of interacting strings,
one can observe the order-disorder transition of the Ising
model directly in the properties of the string ensemble.
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Note added.—After this work was completed, we re-
ceived an interesting paper by M. Caselle, F. Gliozzi,
and S. Vinti (hep-th 9304001) which puts forward ideas
related to those presented here.
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