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A model of a two-dimensional autonomous system subject to external noise is investigated. Without
noise the system has a stable limit cycle in a certain region of control parameter. Various noise-induced
effects have been found numerically, such as a noise-induced frequency shift in the presence of the deter-
ministic limit cycle, and noise-induced coherent oscillations in the absence of the deterministic limit cy-
cle. An interesting result is that the stochastic resonance phenomenon appears in a system without an
external signal and when the asymptotic state of the deterministic system is stationary.

PACS numbers: 05.40.+j, 05.20.—y

In the last decade the phenomenon of stochastic reso-
nance (SR) has attracted central attention in the study of
systems with noise [1-15]. The active role played by
noise in generating coherent motion is of main interest.
The typical problem in the SR study is to investigate the
response of a bistable system to a periodic external force
in the presence of noise. However, in many nonlinear sys-
tems the coherent motion of the systems is not stimulated
by an external force, but by the intrinsic dynamics of the
nonlinear systems. For instance, limit cycles are very im-
portant objects in various self-organization processes of
nonlinear systems in physics, chemistry, biology, and oth-
er fields [16]. Therefore, it is interesting to study how
noise influences the coherent motion generated by the sys-
tem dynamics when the external signal is absent.

The limit cycle of a system can be eliminated by ad-
justing an external control parameter below a critical
value [17-19]. Then the asymptotic coherent motion
disappears. In this case the intrinsic circulation of the
system may still exist, however, and become manifest in
the transient process towards the equilibrium state. It
will be shown that this transient circulation turns into an
asymptotic coherent oscillation by introducing noise. In
this case we find a clear stochastic resonance behavior as
noise builds up the coherent motion.

To be specific, let us study a simple two-dimensional
model in which a limit cycle can be generated or elim-
inated by adjusting a control parameter b,

x=g1(x,y)+ci1(x,y,b),

(n
y=g:(x,y)+calx,y,b),
with
gr=x(1—x2=y?), gr=y(1—x*—p?),
)
cr=y(x2=yp2=b), c3=—x(x2—p2-b),
(g1,g2) is the gradient part of the force
__ oulx,y) __ Bulx,y)
g1 = > 827 >
ox 3%
3)

ulx,p)=—3(2+pH)+ 5 (x2+pH)2.

The potential u(x,y) has a minimum at the cycle I';:
r2=x24y2=1. The circulation part of the force (c,c2)
is vertical to the gradient (g c;+gyc2=0). The circula-
tion changes its direction on the curve I'y: x2—yp2=p.
As b> 1, T'y and I'; do not intersect each other, and then
the system has a limit cycle with » =1. However, the lim-
it cycle disappears via saddle-node bifurcation as b is
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lower than the threshold b.=1. In this case, four fixed
points appear at the intersections of the two sets I'j and
I', among which two are stable nodes and the other two
are saddle points. At the critical parameter b, the system
has an asymptotic heteroclinic orbit, and then the limit
cycle has infinite period, or say it disappears.

The specific form of Egs. (2) is not important. The key
points are the system shows coherent oscillation in a cer-
tain parameter region (here 5 > 1) while the limit cycle
can be eliminated by adjusting an external control pa-
rameter below a certain threshold (here b < 1). Actually,
the asymptotic motion of the system (1) can be explicitly
solved. As t— oo, the system eventually approaches the
cycle I'. The solution on I'| can be analytically given:

4 do
—yo=f a9 4)
t=to j;o b—cos(20) ’

where we have x =rcos(8), y =rsin(8). From Eq. (4) it
is clear that the asymptotic motion is a limit cycle indeed
as b> 1 with the period [§"d6/[b —cos(268)]. As b— 1
the period goes to infinity, and the trajectory eventually
approaches (and leaves) the two heteroclinic points
x==x1, y=0. If b <1 the system monotonously ap-
proaches one of the attractors at x;=+/(1+b)/2,
y|=“\/(l —b)/2or X2= "X, V2=—)I.

Including noise, we may get the corresponding Lange-
vin equations (LEs)

X=g1+Cl+Q|(I) s

(5)
y =g2+C2+Q2(1) s

with <Q,’(l)>=0, <Q,'([)Qj([l)>=1)5,'j8([ —t'); i,j=1,2.
There has not been an analytic approach to deal with
these coupled LEs, especially for intermediate values of
D. Therefore in the following we will treat these equa-
tions numerically.

We simulate the LEs by a simple Euler forward pro-
cedure. The data are taken in a time period T =5000.
The correctness of all the following results are confirmed
by changing the time step and the total time. The spectra
of the time series are obtained by the last Fourier trans-
formation, and each plot is provided by the average of
500 runs.

First we fix b =1.05 at which the asymptotic motion of
the deterministic system is a limit cycle on I'j. Figure 1
shows the power spectrum (S (w))={|y(w)|»T for vari-
ous values of D. {|y(w)|?) is the average of the power
spectra of the 500 different time series {y(w)), i.e.,
(y (@)D =22 |yi(0)]?/500. For small noise [Fig.
1(a), D=0.00003] the spectrum peak is very high and
sharp. As D increases [Fig. 1(b), D =0.05], the peak be-
comes lower and less sharp, and the frequency of the
spectrum peak is considerably shifted. For sufficiently
large D [Fig. 1(c), D =0.9], we have a typical pure noise
spectrum. The peak of finite frequency disappears, and
the coherent motion of the deterministic system is almost
completely destroyed by the strong noise. Two points
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FIG. 1. The averaged power spectrum of y(¢) for b=1.05
and various D. A limit cycle exists for the deterministic system.
(a) D=0.00003. (b) D=0.05. (c) D=0.9.
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should be emphasized for Fig. 1: First, without noise
there is a delta function in the spectrum at the frequency
of the limit cycle. The inclusion of noise reduces the del-
ta function to a peak of finite height. Second, the center
of the peak w, (which will be regarded as the characteris-
tic frequency of the system) is modified by noise: from
Figs. 1(a) to 1(b) w, is shifted to a large extent. These
two points are essentially different from the periodically
forced system where a delta function must appear in the
output spectrum at the input frequency, and the position
of this frequency is not shifted no matter how large the
noise is. However, as the phase of the input signal is sub-
ject to noise some phenomena similar to our case can also
be observed (see Ref. [12]). The profile of Fig. 1(b) is
typical for a limit cycle system subject to noise. The peak
indicates the existence of coherent motion, and the width
of the peak shows the influence of the random force.

In Fig. 2, we reduce b to the critical value (b=1).
Without noise the system will asymptotically approach to
y(t) =0, x(t) = =1, then no coherent oscillation exists
for the deterministic system. Therefore the oscillation of
y(t) can be regarded as an order parameter to measure
the level of the coherent motion. An interesting fact is
that the inclusion of noise stimulates the coherent motion,
recovering the limit cycle again. For small noise [Fig.
2(a), D=0.000031, one finds a small peak at very small
frequency. If we increase noise [Fig. 2(b), D =0.05], the
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FIG. 2. The same as in Fig. 1 with b replaced by 6=1, then
the deterministic limit cycle vanishes without noise. (a) D
=0.00003. (b) D=0.05. (c) D=0.9.
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FIG. 3. The center frequency of the spectrum peak w, vs
log(D) with b=1 (the same in Figs. 4 and 5).

peak moves towards larger @, and the height of the peak
increases. The resemblance of Figs. 2(b) and 1(b) con-
vinces us that in Fig. 2(b) there exists indeed a strong
coherent motion stimulated purely by noise. This
coherent motion can be called noise-induced collective os-
cillation. For very large noise [Fig. 2(c), D =0.9], the
peak of finite frequency disappears like in Fig. 1(c).

In the following figures we fix #=1 and consider the
influence of different values of the noise strength D on the
features of the averaged power spectra. In Fig. 3, we plot
w, against log(D). w, increases as D increases for low
values of D until a maximum is reached and then w, de-
creases. After a certain critical value of D we have
w, =0 identically, then the peak centers at ® =0, and the
system is completely governed by strong noise.

It is interesting to see the dependence of the noise-
induced coherent motion on the noise strength. Figure 4
plots the peak height (4) against log(D). One finds an
obvious peak at the optimal noise strength. However, the
h —log(D) curve does not always correctly represent the
coherent motion. At very large D, the spectrum peak at
=0 certainly increases by increasing D. However, in
this case & no more represents the strength of the
coherent motion. For a more appropriate representation
we plot, in Fig. 5, B=h(Aw/w,) ~' vs log(D) where Aw
is the width of the peak at the height A, =e ~'/2h, and
thus Aw/w, reasonably corresponds to the relative width
of the peak, which is in fact the familiar quality factor of
a signal. B represents therefore the degree of the coher-
ence and is actually the signal-to-noise ratio (SNR) of
the output. The B—log(D) curve shows clearly a sto-
chastic resonance maximum.

For the case of b a little smaller than 1 we get the re-
sults qualitatively the same as in Fig. 2 to Fig. 5. The
peak in Fig. 5, however, moves to the left as b decreases.
For the too small b, the SR effect disappears. The situa-
tion in this case will be discussed in a regular paper [20].

The reason for the SR peak in Eq. (5) is physically
clear. In our system, noise plays a twofold role. On the
one hand, it stimulates coherent motion of the system,
and transfers the transient circulation of the deterministic
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FIG. 4. The spectrum peak height h plotted against log(D).
A resonancelike curve is obvious. However, & goes up again for
very large D.

system to an asymptotic collective oscillation. On the
other hand, noise spoils naturally the coherent motion ac-
tivated by itself. In Fig. 5 in the region D < D,, (D, is
the position of the maximum of B) the first tendency
dominates and we have a monotonously increasing f
—log(D) curve there. In the region D > D,,, the second
one dominates, and then the curve decreases. As a result
a resonancelike behavior occurs. Actually, the competi-
tion of these seemingly opposite roles played by noise is
also the key point in the original SR cases.

Actually, the noise induced oscillation has been ob-
served in various systems due to different mechanisms
[21-25]. Here, we extend the discussion to more general
two-dimensional limit cycle systems. The main new point
in this Letter is that we analyze in detail the influence of
noise on the features of the noise-induced coherent
motion, such as the behavior of the noise-induced fre-
quency shift, the strength of the coherent motion and the
SNR of the output. Most importantly we find for the
first time the SR phenomenon for systems whose deter-
ministic dynamics is autonomous, i.e., SR without exter-
nal signal.

The conclusions obtained in our model can be generally
extended to a wide range of more complicated systems
with limit cycles or transient circulations [17-19] where
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FIG. 5. The SNR B=h(Aw/wp) ~" vs log(D). A stochastic

resonance maximum can be seen.
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the SR without external signal may have interesting prac-
tical applications.
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