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A new echo phenomenon is suggested, which we call the current echo. A disordered one-
dimensional tight-binding conductor subject to two very short voltage pulses is considered. While
the current response following the first pulse decays due to scattering ofI' the disorder, a delayed
current pulse is predicted following the second voltage pulse, its delay being equal to the tempo-
ral separation of the two voltage pulses, This prediction is illustrated for an ensemble of finite,
disordered chains.

PACS numbers: 72.20.Ht, 42.50.Md, 73.20.Dx, 76.60.Lz

Echoes are fascinating phenomena in transient coher-
ent spectroscopy. Spin echoes have been known for a
long time [1], while photon echoes were first reported in
the sixties [2] for the case of optical excitation of two-
level absorbers. Only recently photon echoes in intrinsic
semiconductors have been demonstrated [3]. Both phe-
nomena have been widely applied to the study of phase
destroying mechanisms. Common to these phenomena is
the excitation of an ensemble of dipoles with resonance
frequencies distributed over a certain interval. When ex-
cited by a pulse at time t = G, the macroscopic response
decays on a time scale given by the reciprocal width of
the distribution, A second pulse, arriving after a delay w,

then interacts nonlinearly with the ensemble of the (re-
versibly) dephased oscillators such that at time t = 2r
the individual oscillators are again in phase and an echo
is emitted.

In this Letter we propose a new echo phenomenon,
which we call the current echo. We consider a disor-
dered one-dimensional conductor. A short voltage pulse
induces a current in the direction of the external field,
which decays due to elastic scattering oK the disorder af-
ter a characteristic elastic scattering time ~,j. We will
show that a second voltage pulse, arriving after a delay
time ~ ) ~,~, is able to produce a current pulse at time
t = 2v. after the first pulse. We erst introduce the notion
of current echoes by considering the simple model case
of a two-site conductor. Next we present current echo
traces obtained from a model calculation on the basis of
an ensemble of disordered one-dimensional tight-binding
conductors. Finally, we discuss the observability of cur-
rent echoes in experiments on realistic systems.

We consider a single-band tight-binding system de-
scribed by

H = ) Tsctcs —eE(t) ) R, ctcr
1

The equation of motion for the density matrix of a single
chain in the new basis, p is

= (ct col) (with a, , p = u, l),
reads S = 0 x S with a Bloch-vector S defined by

~1 = Pul + Plu ~

~2 = &(Pul Plu)~

~3 = Puu —Pll)

(3)

and hA = (—2eaE, O, hero). This description is equiv-
alent to the usual spin-vector (Bloch-vector) formalism
for the spin and photon echo, respectively. In the spin
and photon echo situations one is interested in the po-
larization given by Si [4]. The classical echo situation
is characterized by the following pulse sequence: a vr/2

pulse (pulse 1) arrives at t = 0 at the system being in its
ground state (Ss = —1), followed by a ~ pulse (pulse 2)
at t = r. Pulse 1 moves S into the equatorial 1-2 plane,
where, due to the inhomogeneously distributed eigenfre-
quencies, the phase coherence of the individual systems
becomes lost. Pulse 2 inverts S in the equatorial plane,
such that after another interval 7. —+ 2w the vectors S
of all the two-level systems move again in phase; the re-

of just two levels 1 and 2 (see Fig. 1). Diagonalizing the
first term of the Hamiltonian yields a two-level system
in analogy to a spin-1/2 system, or to the photon echo
situation for the case of two-level absorbers. In the new
basis the Hamiltonian reads

H = c„c„— cl cl —eaE(t) (c,c„+H.c.),
Avdp t Rdp

2 "" 2
(2)

Ldp = 2Tig.

where T,~ is the Hamiltonian matrix with diagonal disor-
der, and E(t) is the applied field pulse; R., is the position
vector of site i placed on a lattice with lattice constant
a, and c, , c~ are electron operators.

The essential features of a current echo can already be
demonstrated for an ensemble of chains each consisting

FIG. 1. The two-level system. Levels 1 and 2 are coupled
by Ti2, yielding upper (u) and lower (l) eigenstates.
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alignment of all components Sq then leads to the emission
of an echo signal. Here, in contrast, we are interested in
the components S~, which are proportional to the cur-
«nt ji~ = ~«Ti2(p12 P21)/& = ~«T12(p~t —pi~)/~ =
eaTq2S2/h. The realignment of all S vectors implies also
that all components S~ are in phase at time t = 2~, thus
producing an echo surge in the macroscopic current.

Within the two-level system approach there is a one-
to-one correspondence of spin echo, photon echo, and
current echo. However, this correspondence is lost if the
two-level systems are mutually coupled. For an adequate
description of this latter situation it is also more appro-
priate to resort to perturbation theory with respect to
the external fields. Generally, at least third-order per-
turbation theory is needed to describe echo phenomena
[5]

The treatment of current echoes from mutually coupled
levels is based on the tight-binding Hamiltonian in Eq.
(1) with i, j = 1, . . . , N, where N ) 2. The current is

given by

3(t) = e(R)

=i „)—R,,T,,p.. .
23

with R,~
= R~ —R, , and p,~

= (cIc~) is the density
matrix in site representation. Using an obvious matrix
notation, the time dependence of p,z is given by

crap = Lp+——eE M(p),h
(5)

where Lp = [T, p] and [E M(p)],z
——E R,zp, ~.

We will now illustrate the appearance of a current echo
by numerically calculating the current j 22' (t) in third
order in the external field. Assuming h(t)-like voltage
pulses, and concentrating on the contribution from the
pulse sequence (1, 2, 2), we find from Eqs. (4) and (5)

4

j~'"l(~) = —
~

-'
[ O(~ —~)O(~)

i(&—7 )T/hE(2) M ~E(2) M i&T/hE(1) M 0
— —i7.T/h —i(&—7 )T/h (6)

where p,~ (0 ) = (0[c,cz 0) and ~0) is the equilibrium
ground state.

The numerical calculations are performed for a linear
chain consisting of N sites with nearest-neighbor cou-
pling T,~ (i, j nearest neighbors), and random site en-
ergies T,, drawn from a rectangular distribution func-
tion of width R'. The average is taken over an en-
semble of 1000 chains. For this one-dimensional system
[M(B)],~ = (i —j)aB,~. The lowest eigenstate of T has
been taken as the equilibrium ground state [0). The cal-
culation of j ~ l (t) from Eq. (6) involves a number of
transformations from the eigenbasis of T to the site ba-
sis and back. Figure 2 shows a third-order current trace
for times larger than the pulse delay time and for an en-
semble of chains with N = 5 sites each. The disorder is
given by a width TV = 0.65Jo. The nearest-neighbor cou-
pling TU = Jo has been taken as the unit of energy. The
first-order current has already decayed in the time do-
main shown. The current trace, which oscillates around
zero, consists of two parts. There is a background for all
times shown; its amplitude decreases with the number of
disordered chains in the ensemble (an average over 1000
chains is shown in Fig. 2). In contrast, the large am-
plitude centered at t = 27 does not depend on the size
of the ensemble. This is the current echo. It is interest-
ing to note that the current attains a maximum negative
value at exactly t = 2w.

The appearance of a current echo can be understood
in the following way. The Hamiltonian matrix T can
be diagonalized yielding closely spaced eigenvalues. Ini-
tially the system is in its ground state, represented by

a certain number of its lowest lying states. The iFirst

pulse at t = 0 induces pair excitations between these oc-
cupied states and unoccupied states (e.g. , between ~E )
and ~E~)). These pairs are mutually interrelated, since

[E ) is also coupled to [Eq), etc. The situation at hand
therefore reminds one of quantum beats in an N x M
system. In optical spectroscopy [6], it is known that for
large N and M, a total decay of the nonlinear signal takes
place without any occurrence of echoes or quantum beats.

I

2c
I"IG. 2. Nonlinear current response j as a function of

time, after the second voltage pulse, for an ensemble of 1000
linear disordered chains having 1V = 5 sites each. Note that
the current oscillates around zero.
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However, in our situation, and for weak disorder, the elec-
tric field predominantly couples those states which are
nearest neighbors in energy, provided the length of the
chain is sufBciently large. These pairs of states can be
viewed as an ensemble of isolated two-level systems, and
the preceding discussion applies. Their contribution to
the nonlinear signal is the current echo. For even larger
chains, and jor larger disorder, the chains break up into
smaller subchains due to localization, and the above rea-
soning applies to each of these subchains as well. Be-
sides excitations between pairs of eigenstates, the pulse
sequence also produces excitations involving more than
just two levels. Their contribution to the current, how-
ever, is suppressed by the configurational average. The
background noise seen in Fig. 2 is a remainder of these
signals and can be further reduced by considering more
() 1000) chains in the averaging procedure. The fast os-
cillations in the current peak around t = 2w are due to
the fact that the average level spacing in our calculations
is larger than the width W of the diagonal disorder. For
the opposite case (i.e. , the average level spacing is smaller
than W), a single echo peak without any additional os-
cillations will occur. This situation can be achieved by
enlarging N [7]. Note that the sign of the echo peak is
negative since the echo current at time t = 2v is gener-
ally negative, i.e. , reversed with respect to the first-order
current.

In essence, the current echo represents a delayed cur-
rent response of the system to a succession of two short
voltage pulses. It is a nonlinear coherent eKect and relies
on the presence of static disorder.

So far we have neglected any irreversible phase relax-
ation due to interaction with dynamical degrees of free-
dom, e.g. , interactions with phonons. They take place
on a time scale given by the phase relaxation time 7d ph.
In order to be able to observe current echoes, the elas-
tic scattering time ~,~ has to be sufBciently smaller than
the dephasing time ~d,ph. These two times define upper
and lower limits for the observation of current echoes.
Suitable candidates for the experimental demonstration
of current echoes have to fulfill the following require-
ments: nearest-neighbor coupling, sufBciently long de-
phasing times rg, ~h, and controllable disorder to achieve
short enough elastic scattering times ~,~. We propose
semiconductor heterostructures, such as coupled quan-
tum wells or superlattices, as possible systems, which
can be prepared to meet the above requirements [8].
These structures are characterized by intraband dephas-
ing times as long as 7 ps [9]; this gives us an upper limit
of the order of some ps. The lower limit 7;~ depends
on the interwell coupling and on the nature of the dis-
order. Both the interwell coupling and, to a certain de-

gree, the disorder can be tailored at will in semiconductor
heterostructures. As a final ingredient, sufBciently short
voltage pulses are needed. Such pulses could be supplied
by the electrical THz pulses most recently demonstrated
in optical experiments on semiconductor heterostructures

In conclusion, we have given theoretical evidence for
a new kind of echo phenomenon, which we call the cur-
rent echo. The demonstration is based on an ensemble of
finite, disordered, one-dimensional tight-binding conduc-
tors. We suggest to verify the existence of current echoes
experimentally by applying THz voltage pulses to suit-
ably designed semiconductor heterostructures. Finally,
we suggest that once the existence of current echoes has
been demonstrated, their decay, being due to dephas-
ing interactions, could be used to determine the inelas-
tic transport scattering time 7d ph independently of the
much smaller elastic scattering time ~,~ in these struc-
tures.

The idea for this work originated from discussions with
Stefan Schmitt-Rink. Discussions with R. Zimmermann
are also gratefully acknowledged.
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