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We propose an explanation for the experimentally observed transition in the shape of silicon
clusters of size 20 & N & 40: Elongated shapes of low energy can be obtained by stacking stable
subunits, while concurrent optimization of surface-to-volume ratio and surface structure leads to
compact shapes. A transition in shape from elongated to compact structures is expected as the size
increases beyond a critical value at which interior atoms become stable. Our proposal is backed by
extensive first-principles calculations on the energetics of two classes of Si clusters, which suggest a
critical size bounded by 24 & N & 28, in good agreement with experimental observations.

PACS numbers: 61.50.Lt, 36.40.+d

The study of small clusters of atoms has been produc-
ing unexpected results for the last several years. One of
the recent surprises was the observation by Jarrold and
co-workers [1,2] that the shape of small Si clusters, con-
taining N =20—40 atoms, depends on their size. Specifi-
cally, it appears that clusters of prolate shape are preva-
lent for sizes up to 27, whereas for larger sizes a more
spherical oblate shape dominates. This striking observa-
tion brings a new dimension to a much debated question:
What exactly is the structure of nanoscale Si particles
and how does it evolve to that of the macroscopic crystal
as the size increases? [3] Up to now, mostly spherical
and compact clusters have been considered as theoreti-
cal models attempting to address this question (the only
exception being Phillips qualitative arguments for elon-
gated models, see Ref. [4]). Indeed, in a small cluster,
where most of the atoms are on the surface, one might
expect the shape that minimizes the surface area to dom-
inate. Thus, if a cluster were able to change its shape
without large energy cost it would tend to be spheri-
cal. An apt analogy is the liquid-drop model invoked
to describe the shape of atomic nuclei [5]. The new as-
pect that Jarrold's experiments introduce to the debate is
that the overall shape, as well as the local structure, can
depend on the size of the cluster. The apparent strong
dependence of structure and shape on the size of these
microscopic particles cannot be addressed by classical
macroscopic theories such as, e.g. , Landau's derivation
of crystal shape from surface-tension anisotropy [6]. The
present work attempts to address this issue by examining
cluster stability as a function of size and shape using First-
principles quantum mechanical total-energy calculations
on a range of representative models of silicon clusters.

As has been pointed out in the literature [7], it is
a mathematically intractable task to find the optimal
structure of a cluster in the size range of interest (N &
20), even if one were to use a simple classical potential to
model atom-atom interactions. For instance, a recent ex-

haustive study for ground-state structures of Si clusters
using first-principles molecular dynamics has addressed
sizes only up to five atoms [8]. In fact, since several en-
ergetically comparable isomers are likely to exist at large
sizes, finding the optimal structure for a given size is
not the desirable approach. For these reasons we have
chosen a difFerent approach, that is, we study in detail
two distinct types of structures. The first type consists
of puckered sixfold rings of atoms, stacked along a cen-
tral axis of threefold rotational symmetry and capped by
single atoms at either end. This stacking produces elon-
gated (i.e. , prolate) structures. The second type features
a more compact geometry, with as many interior atoms
and a shape as nearly spherical as possible. Both struc-
ture types were motivated by analogy to bonding in the
bulk and on Si surfaces. In particular, the puckered six-
fold rings in the elongated clusters are borrowed directly
from the diamond lattice, whereas the arrangement of the
surface atoms in the compact class resembles that of Si
surface reconstructions. The similarity to surface recon-
structions has been proposed to explain relative stability
and possibly sharp variations in chemical reactivity for
clusters in a somewhat larger size range (30—50 atoms)
[9]

The two classes of structures we consider here may not
actually contain the energetically most favorable geome-
tries. Their merit is that they represent two qualitatively
difFerent ways of producing successively larger clusters
with the same type of chemical bonding (predominantly
covalent, as in bulk Si). Clusters of elongated shape
might exist if a particular unit of atoms shows excep-
tional stability, so that a stacking of such units becomes
a favored mode of growth. On the other hand, if mini-
mization of surface area were a dominant consideration,
a spherical cluster shape would obtain, provided that fa-
vorable bonding arrangements are consistent with this
shape. The competition between the two trends is pre-
cisely what our two classes of models attempt to capture.
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In the first class a stable unit of covalently bonded atoms
is repeatedly stacked along one axis, giving elongated
shapes without changing bonding and coordination. In
the second class the most compact structure is sought
for a given cluster size, consistent with predominantly
covalent bonding. This produces significant changes in
coordination as the cluster size increases. Thus, the com-

fparisonarison of these two classes can reveal the importance o
shape as a function of size, while ether factors, such as
the nature of bonding, are kept fixed. We have also con-
sidered variants of the two classes, and find that they
follow the same trends.

We have performed first-principles total-energy calcu-
lations for clusters of both types over the size range N =
20 to 33 atoms. This range brackets the size at which ex-
periments show the intriguing transition in cluster shape
[2]. The calculations described here are based on den-
sity functional theory, in the local density approximation
(LDA) [10], a quantum mechanical theory that predicts
bond lengths and bond angles in molecules and solids
to within a few percent of experiment [8]. We also in-
clude the recently developed generalized gradient approx-
imation (GGA) for the exchange and correlation energy
functional [11], which has been shown to give a marked
improvement over LDA in the binding energy of finite
systems [12]. We use a basis of Gaussian orbitals and a
numerical integration scheme [13] with a mesh that can
be systematically refined to deliver very high accuracy
in the energies. Optimized geometries for each structure
are obtained by conjugate gradient minimization of the
calculated Hellmann-Feynman-Pulay forces on the atoms
[13]. The atom positions are relaxed until the average
force on an atom becomes less than 0.01 a.u. (further

~ ~relaxation of the structure was found to have a negligi-
ble effect on the binding energy). The binding energy per
atom E~ for the relaxed cluster is then obtained from the
GGA, with the energy of a free Si atom as a reference.

We discuss first the structural features of our models.
The puckered sixfold rings of the elongated structures are
similar to the rings along the (111)crystallographic di-
rection in bulk Si. The rings are stacked along a central
axis and are capped by single atoms at either end. These
structures have oblong shape, with the central axis longer
than the ring diameter. Every atom is on the cluster sur-
face and has threefold coordination. Ring structures were
studied for the N = 20, 26, and 32 atom clusters. The
20- and 26-atom ring structures are shown for illustration
in Figs. 1(a) and l(b). One variant of this structure is a
28-atom cluster, which contains two atoms in the center,
joining two 13-atom sections composed of two rings and
one cap each. This is shown in Fig. 1(c). The two central
atoms are fourfold coordinated.

The compact structures have shapes closer to spheri-
cal. Except for the 20-atom cluster [a perfect dodecahe-
dron shown in Fig. 2(a)] and the 26-atom cluster [Fig.
2(b)] the compact clusters include interior atoms with
at least fourfold coordination, while the surface atoms
have at least threefold coordination. The 26-atom com-
pac cact cluster consists of two hemispherical domes of ten
atoms joined by a ring of three dimers. The dimers have
a structure that closely resembles the dimer bonds on
the Si(100)-(2 x 1) surface reconstruction. The 10-atom

(b)

(c)
FIG. 1. Representative elongated structures formed by

stacking puckered sixfold rings with two single-atom caps at
either end. (a) 20-atom structure; (b) 26-atom structure; (c)
28-atom structure, obtained from the 26-atom structure yb
addition of two atoms in the center.

(c)
FIG. 2. Representative compact structures. (a) The 20-

atom dodecahedron; (b) the 26-atom structure formed by two
10-atom domes joined through three dimer pairs; (c) the 28-
atom structure formed by addition of two interior atoms to the
26-atom structure; (d) the 33-atom structure with Tq symme-
try resembling the surface reconstruction of Si,~~~ — 7x 7 .ry,
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FIG. 3. The calculated binding energy per atom E& (in
ev) for the ring structures (triangles) and the oblate struc-
tures (dots) over the size range N = 20—33. The square cor-
responds to the cubic structure of 27 atoms and the circle
corrsponds to the 28-atom fullerene structure. The dashed
lines describe the expected behavior for spherical clusters

1
(E~ N &) and that of elongated shapes (constant Ee).

domes can be continuously deformed without any bond
breaking to obtain the tetra-capped octahedron, one of
the lowest-energy geometries for size 10 [14]. The 28-
atom cluster has the same structure as the 26-atom clus-
ter, with the addition of two interior atoms [Fig. 2(c)].
An alternative model for a 28-atom cluster is inspired by
the fullerene structure [15], and consists of pentagonal
and hexagonal rings on a cage with empty interior. The
33-atom cluster [Fig. 2(d)] has perfect tetrahedral (Tg)
symmetry, it contains five interior atoms with fourfold
coordination and has a surface reconstruction which is
locally similar to the 7 x 7 reconstruction of the Si(ill)
surface (for details see Ref. [9]). The 29-atom structure
is a derivative of the 33-atom structure, with the four
outermost atoms [which correspond to the "adatoms" of
the Si(ill)-(7 x 7) reconstruction] removed. This cluster
retains the Td symmetry of the 33-atom cluster. Finally,
we have considered a compact but nonspherical struc-
ture of 27 atoms arranged in a simple cubic geometry
(Oh, symmetry). This structure has a single sixfold co-
ordinated atom in the center, but is not a perfect cube,
due to significant relaxation of the surface atoms.

The binding energy per atom for the various clusters
studied is shown in Fig. 3. The results strongly suggest
that there is a transition in the shape of the most stable
clusters as their size increases: The smaller clusters prefer
the elongated shape, while for the larger clusters, the
compact structures are more favorable. The existence of
this transition can be understood, in general terms, by
a surface-to-volume argument: For spherical clusters of
size N the binding energy per atom is expected to behave
as

1
EB =&V+&gN

where the first term is a constant volume term (ai & 0)
and the second term reflects the higher energy (ag ) 0)
of the surface (see also Ref. [5]). Thus, EJ3 will increase
monotonically (in absolute value) with size N for spheri-
cal clusters. For elongated structures grown by accretion
of a stable subunit the surface-to-volume ratio (which is
1 for the stacked-ring model) remains constant with clus-
ter size, so that E~ is expected to be independent of size.
The two dashed lines in Fig. 3 indicate the expected be-
havior, with parameters that put the curves in the range
of calculated energies.

Let us discuss in more detail the nature of the tran-
sition reHected in Fig. 3, in the context of the mod-
els considered here. There are two aspects of the clus-
ter shape that bring about the transition. First, both
classes of models contain bonding arrangements that are
close to the directed covalent bonds characteristic of the
infinite-size system (the diamond crystal). The larger
compact structures possess the added feature of surface
relaxation8 which are close to reconstructions of bulk Si
surfaces. This enhances their stability. The relative ener-
gies of the different cluster shapes at N = 20 and N = 26
illustrate this effect. At both sizes, the two types of clus-
ters consist solely of threefold coordinated surface atoms.
The dodecahedron structure [Fig. 2(a)] is the smallest
compact cluster that we were able to construct, with di-
rected covalent bonds at bond angles (108') close to the
tetrahedral angle (109.4') of the diamond crystal. How-
ever, the very high symmetry (Ih) of this geometry leaves
no room for relaxation, and the bonding features char-
acteristic of reconstructed Si surfaces cannot be realized.
The energy of this structure is higher than that of the
elongated stacked ring structure of equal size [Fig. 1(a)].
The first size where surface-related features appear in the
compact class is N = 26, which has a ring of dimers on
the surface corresponding to the dimer reconstruction of
the Si(100)-(2 x 1) surface. As seen from Fig. 3, the
N = 26 compact cluster is significantly more stable than
the elongated ring structure of equal size, even though
both geometries contain exclusively threefold coordinated-
surface atoms.

The compact shape becomes even more stable when
two atoms are added to the interior of the 26-atom clus-
ters to form the 28-atom structures [see Figs. 1(c) and
2(c)]. This observation leads to the second important
aspect of the change in shape suggested by the binding
energy results: this transition is marked by the emer-
gence of stable interior atoms in the compact structures.
For roughly spherical clusters larger than a critical size,
there is room in the cluster interior to accommodate cova-
lently bonded atoms. From the models considered here,
this critical size appears to be N = 26. In contrast,
the elongated structures have too small a cross section
to accommodate interior atoms. For example, inserting
two atoms in the middle of the 26-atom ring structure
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to produce an elongated structure of 28 atoms [see Fig.
1(c)] does not lower the cluster binding energy. Finally,
we note that higher coordination alone is not a deter-
mining factor in cluster stability. The simple cubic ar-
rangement of 27 atoms is energetically rather unfavorable
(see Fig. 3), even though it contains one central sixfold-
coordinated atom and all other atoms have coordination
3 or higher (the average coordination is 4). In the same
vein, the 28-atom empty-cage fullerene structure, which
produces quite stable carbon clusters [15], has higher en-

ergy than our model of the same size consisting of two
interior Si atoms and a surface of Si dimers [Fig. 2(c)].
This demonstrates the importance of the shape and the
bonding arrangement of the surface atoms in producing a
low-energy stable structure. The structures with 29 and
33 atoms fulfill all the requirements for optimal bond-
ing: they contain five interior atoms, they have surface
features that closely resemble those of reconstructed Si
surfaces, and their shape is as close to spherical as possi-
ble, while maintaining predominantly covalent bonding.
Their low E~ further confirms our conjecture regarding
the structure of these systems.

For the elongated clusters, it is certainly possible that
other structural units of low energy could be stacked to
produce favorable prolate geometries (see Ref. [2]). For
the compact clusters on the other hand, we believe that
our models may be close to optimal, since they embody
a number of features that tend to stabilize bulk and sur-
face structures of Si. If this is the case, any elongated
cluster in the size range above 29 will lie higher in
energy than our models for the compact clusters. Thus,
we expect that when other structures are considered, the
constant-energy line in Fig. 3 corresponding to elongated

1
structures could move lower, whereas the N & line cor-
responding to compact spherical structures is close to its
optimal position. These considerations indicate that the
crossover between elongated and spherical shapes lies in
the range 24 & N & 28 (see Fig. 3). The lower bound
corresponds to structures with surface atoms only, which
leads to predominance of prolate geometries from stack-
ing of stable subunits. The upper bound corresponds to
a size at which interior atoms in compact clusters be-
come stable, as our models demonstrate, and the spheri-
cal shape begins to dominate. Although this behavior
can be surmised on general grounds, our models and
total-energy calculations give a detailed understanding
of why the transition in shape takes place at the ob-
served range of sizes [1,2]. It is also of interest that this
transition in shape is independent of kinetics, since it is
observed at the same size for annealed and unannealed
clusters [1,2]. This strongly suggests that the transition
has to do with a fundamental change in the nature of the

cluster geometry (which is captured by the two qualita-
tively difFerent classes studied here), rather than specific
geometrical changes that may depend on kinetics. The
appearance of interior atoms and surface-reconstruction
features indicates that the transition in shape is related
to the development of bulklike features in these clusters,
which has been the subject of intense theoretical investi-
gation [3,4,9]. Thus, the present work provides indirect
evidence that the critical size N, for a transition from
size-specific behavior (characteristic of very small clus-
ters) to bulklike behavior (characteristic of the infinite
system) is also in the same range, 24 & N, & 28.

The calculations described here were performed at the
Cornell National Supercomputer Facility.
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