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Long Range Order in Two Dimensional Fractal Aggregation
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Long range intercluster structural order has been observed in the late, diffusion-limited stages of
cluster-cluster aggregation of colloidal monolayers at liquid surfaces. The structure factor S(q, t)
scales as q f (t)F(q/q ), the exponent being the fractal dimension of two dimensional difFusion-
limited cluster aggregation, Such scaling is not observed when the aggregation is reaction limited.

PACS numbers: 64.75.+g, 05.40.+j, 64.60.Ht, 82.70.Dd

Nonequilibrium processes in colloidal systems have ex-
cited much recent interest, particularly concerning the
structural and kinetic aspects of aggregation. The frac-
tal nature of structures formed in cluster-cluster aggre-
gation has been demonstrated, the extremes of diffu-
sion (DLCA) and reaction limited (RLCA) aggregation
having both been observed, and the critical scaling pre-
dicted for the aggregation kinetics has been confirmed
[1]. However, the recent report that aggregation in three
dimensional colloidal suspensions of rather high volume
fractions exhibits features similar to systems undergoing
spinodal decomposition [2] was completely unexpected,
suggesting the need for some reassessment of our under-
standing of the fundamental processes involved. This
Letter presents the first measurements of such dynamics
in the aggregation of two dimensional colloidal monolay-
ers.

While spinodal decomposition (SD) may not be strictly
relevant to these colloidal processes, a brief summary of
the main features of thi. s process is useful. Convention-
ally, spinodal decomposition is the mechanism by which
phase separation occurs in a mixture that is quenched
into a thermodynamically unstable state. The charac-
teristic range of unstable concentration fluctuations and
the formally negative diffusion coeKcient lead to a fastest
growing Huctuation at finite wave number, producing a
ring in the pattern of scattered radiation, the radius of
which changes with time. Despite the diversity of the
physical systems in which SD has been observed [3], uni-
versal features are found in the kinetics. Furakawa [4]
has shown that in the later, nonlinear stages the struc-
ture factor S(q, t) scales according to a universal law,

S(q/q, t) = q "(t)E(q/q ),
where q is the position of the structure factor peak and
S(q/q, t) is the structure factor. I'(q/q ) is a time inde-
pendent scaling function. Normally the exponent in this
relation is just d, the dimension of the space in which the
system is embedded. Such scaling of S(q, t) has been ob-
served in a variety of systems in which SD plays no part
(e.g. , breath figures [5]), suggesting it may be a more
general feature of the coarsening process.

A colloidal system may be "quenched" into a region

of instability by the addition of an electrolyte which ef-
fectively screens the electrostatic repulsion between the
colloidal particles. The ensuing aggregation apparently
exhibits scaling features similar to those proposed by Fu-
rukawa [2], despite the lack of anomalous diffusion of
monomers and clusters in the unstable region. In dense
suspensions exhibiting DLCA the structure factor S(q)
scales as in Eq. (1), but with an exponent equal to df,
the fractal dimension of the colloidal clusters, rather than
d.

The surprising similarities between these observations
and certain aspects of SD in conventional systems ap-
pear to suggest some underlying common mechanism in
the dynamics of these irreversible processes. Quantita-
tive studies are needed to study the dependence of the
coarsening process on the aggregation kinetics to further
test these ideas. For example, there is a need to investi-
gate this effect in embedding spaces of different dimen-
sionality. For two dimensional (2D) colloidal monolayers
trapped at a liquid surface [6] the structure can be di-
rectly visualized by optical microscopy; the correlations
between the clusters can easily be seen. Further, the
high density limit of cluster-cluster aggregation can also
be realized and studied more easily than in 3D, phase
separation under the action of gravity is precluded, and
the aggregates are less liable to mechanical instability
induced by bending or hydrodynamic stress.

Our experimental methods have been described in full
elsewhere [6(a)]. In brief, polystyrene latex spheres of

1 pm diameter (Seragen Diagnostics Ltd. ) were spread
on the surface of an aqueous subphase. Monolayer area
fractions (P) were rather high, typically = 10%. The
particles are highly charged and interact via long range
dipole-dipole electrostatic forces [7]. Adding salt (CaC12)
to the subphase induced irreversible aggregation, which
proceeded to gelation over times of the order of several
hours. Images were grabbed at various stages throughout
aggregation for subsequent analysis.

Figure 1 shows a sequence of images taken as a col-
loidal monolayer aggregated on a 0.73M subphase. Such
a sequence represents quasirandomly selected samples,
due to some mobility of the colloidal monolayers [6(a)].
The images typically contain some 19000 clusters at early
times, falling to about 250 just prior to gelation. Clearly,
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FIG. 1. Four digitized pictures (730 x 486 p, m) of a col-
loidal monolayer on a 0.73M CaC12 substrate at different
times after initiation of aggregation: (a) 15, (b) 75, (c) 105,
and (d) 135 min.

over length scales of the order of the cluster sizes the
aggregates are fractal (Fig. 1). The fractal dimension
found by the sandbox method [6(a)], df = 1.43 + 0.04,
corresponded to values found in simulations of DLCA in
2D. At larger length scales the clusters appear roughly
equally spaced, their separations increasing with time
(Fig. 1).

More quantitative analysis supports this latter point.
The separations of nearest neighbor clusters in such im-
ages were determined from the Delaunay triangulation
[8] of the centers of gravity of all clusters not intersecting
the image boundary. Probability distributions of these
separations [P(x)] are shown in Fig. 2. During aggrega-
tion the distribution moves bodily to larger 2:, widening
somewhat as it does so, in qualitative accord with expec-
tation for Eq. (1). Error bars are small enough that the
distributions are distinct, but are omitted from Fig. 2
for clarity. They may be estimated from the numbers of
clusters on which each image is based (see caption).

Equation (1) applies in Fourier transform (FT) space,
so the power spectra of the binary experimental micro-
graphs were computed (as the square modulus of their
2D FT), and the structure factors S(q, t) obtained by
angular averaging. Figure 3 shows a series of S(q, t);
as aggregation proceeds and clusters begin to form the
structure factor develops a peak at finite q. As clus-
ter growth continues, the peak shifts to smaller q and
its width decreases. At gelation the maximum in S(q, t)
merged with the q = 0 peak to assume a monotonic de-
cay, reflecting the fractal nature of the gelling structure.
The results presented here relate to earlier times. At
large q, S(q, t) tends to a single asymptotic curve (inset
of Fig. 3) decaying as a power law in q, consistent with
the fractal dimension given above. The position of the
peak (q~) in S(q, t) correlates well with the maximum
(x ) «P(x): q = 27r/x . We do not pursue this inm
detail as there is no direct one-to-one relation between

FIG. 2. Probability distributions of the separations of
nearest neighbors in the colloidal monolayer of Fig. 1. The
legend indicates times (in minutes) after initiation of aggre-
gation. The distributions derive from 2907, 948, 214, and 170
clusters (in order of increasing time).

P(x) and S(q, t). The ability to simultaneously study
structure in both real and Fourier space is, however, a
major advantage of 2D colloidal systems.

Equation (1), embodying the scaling formalism of Fu-
rukawa, shows that the structure function S(q, t) scales
with a single length parameter. Figure 4 shows that
rescaling by q does indeed lead to the collapse of the
later S(q/q, t) of Fig. 3 onto a scaling form F(q/q ).
The scaling exponent was found to be the fractal dimen-
sion of the system (df = 1.43); a variation of more than
= 7% from this value leads to a noticeable degradation
of the reduction to a single curve. It would appear that
the scaling exponent for coarsening in 2D colloidal aggre-
gation is the fractal dimension of the system. While the
large q dependence of S(q, t) upon df is established, the

dinHuence of df upon the intercluster separation, reflecte
in q~, is less obvious. The scaling of S(q, t) as in Eq. (1),
with df in place of d, suggests that in some sense such
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FIG. 3. Plots of the structure factor at times from 15
to 105 min after initiation of aggregation for the system of
Fig. 1. Inset: a log-log plot of the high q data, demonstrating
the fractal scaling at short length scales.
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FIG. 4. The structure factors of Fig. 3 rescaled as
q "~(t)S(q/q, t). The data are for the later stages of ag-
gregation only (times as legend).

FIG. 5. As Fig. 1, but for substrate molarity 0.25M:
times (a) 75, (b) 270, (c) 315, and (d) 330 min. The polydis-
persity characteristic of RLCA is apparent.

systems exist in a space of dimensionality df, so that the
fractal concept provides a way of interpolating between
Euclidean spaces of different dimensionality.

The S(q, t) characterizing the early stages of aggrega-
tion do not scale spinodally; in particular they do not
grow exponentially at fixed q as expected from the lin-
ear Cahn-Hilliard theory [9]. This is also observed in bulk
colloidal suspensions [2]. This likely arises from the in-
applicability of this theory to these systems. However, it
may also be, at least in part, because scaling in colloidal
aggregation is specific to the diKusion-limited case [10].
In the earlier stages of aggregation the structure and ki-
netics resemble those for RLCA [6(b)] (as in 3D [11]).
The kinetics can be typified by the average cluster size

s(t): Initially s(t) grows slowly, being reaction limited,
but at large times it increases faster, asymptotically as
s(t) Ix t', where the scaling exponent z increases mono-
tonically with subphase molarity [6(b)]. This crossover
was also reflected in changes of the cluster structure, the
fractal dimension decreasing as the clusters grew in size
[6(c)]. The region of slow, reaction-limited growth coin-
cides with nonscaling of S(q, t).

Now RLCA is observed at all times in our experiments
for lower salt molarities [6]. Figure 5 shows a typical se-
quence of images from such an experiment. Clusters of
all sizes up to a time-dependent maximum coexist. This
contrasts with the behavior in experiments at higher salt
molarities, where the clusters are much more uniformly
sized and spaced (Fig. 1). Despite the suggestion [10]
that for RLCA S(q, t) should lack peaks, in the present
work peaks were observed at most times, suggesting that
there is a most probable cluster separation (cf. Fig. 6).
However, these S(q, t) cannot be scaled onto a single
curve for any value of the exponent d in Eq. (1).

It may thus be that the failure of Furukawa-like scal-
ing at early times in experiments at high subphase salt
concentrations connects with the absence of such scaling
for RLCA.
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FIG. 6. Probability distributions of nearest neighbor sep-
arations for the monolayer of Fig. 5, based on 3741, 3617,
2772, 1762, 1339, and 801 clusters (for increasing times as
legend).

P(x) does not scale as S(q, t). However, the distri-
butions of Fig. 2 superimpose reasonably well if platted
as x~P(x/x ): Compression of the abscissa by x is
balanced by a similar expansion of the ordinates to re-
tain the normalization of the distributions. In this sense
P(x) retains a constant shape for DLCA. This is not so
for RLCA (Fig. 6), where the shape of P(x) does change
as aggregation proceeds. Specifically, for RLCA there al-
ways seems to be a significant population at small x even
when the peak of P(x) has moved substantially: P(x)
broadens but does not shift bodily as in DLCA (Fig. 2).

The kinetics described above arise from a low particle-
particle bonding probability. We believe that this is due
to significant residual electrostatic charges on the parti-
cles, relatively insensitive to screening, even by high sub-
strate salt molarities [12]. However, as aggregation pro-
ceeds, the increasing number of possible contact points
of large clusters with other particles or clusters will cause
the efFective probability of irreversible bonding to become
significant [6(c)]. For lower salt concentrations the repul-
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sion will be greater, giving a smaller sticking probability,
which may be so low that aggregation will preferentially
involve only the largest clusters, leading to a polydisperse
cluster size distribution (RLCA). The rather lower elec-
trostatic repulsions at high molarities would reduce this
tendency for only the larger clusters to interact, leading
to a more monodisperse cluster size distribution (DLCA-
like) .

Why does DLCA-like behavior lead to Furukawa-like
scaling? Previous studies [6(b)] have shown that the
onset of rapid aggregation coincided with the appear-
ance of large clusters. Apparently the rapid disappear-
ance of small clusters in DLCA arises because they are
mopped up by the large clusters, rather than aggregating
with other small clusters. This, together with the resid-
ual electrostatic repulsion, would lead to depletion zones
around the large clusters, the consequent spatial correla-
tions between the clusters in DLCA leading to the scaling
of S(q, t). These inferences are supported by the distribu-
tions of nearest neighbor cluster separations. P(x) moves
bodily to larger x as DLCA proceeds, indicating the dis-
appearance of clusters close to the larger ones, whereas
for RICA significant numbers of small separations per-
sist until the entire colloidal monolayer gels.

The present results tend to support the hypothesis that
Furukawa-like scaling is a general description of a wide
variety of aggregation processes in colloids with attrac-
tive interactions [13].
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[1] P. Meakin, in Phase TJransitions and Critical Phenomena,
edited by C. Domb and J.L. Lebowitz (Academic, New
York, 1988), Vol. 12, p. 335.

[2] M. Carpineti and M. Giglio, Phys. Rev. Lett. 68, 3327
(1992).

[3] E.g. , J.S. Huang, W.I. Goldburg, and A.W. Bjierkaas,
Phys. Rev. Lett. 32, 921 (1974); S. Katano and M.
Iizumi, ibid 52, .835 (1984); P. Wiltzius, F.S. Bates, and
W.R. Heff'ner, ibid. 6G, 1538 (1988); P. Wiltzius, F.S.
Bates, S.B. Dierker, and G.D. Wignall, Phys. Rev. A 36,
R2991 (1987).

[4] H. Furukawa, Adv. Phys. 34, 703 (1985); K. Binder and
D. Stauffer, Phys. Rev. Lett. 33, 1006 (1974); J. Marro,
J.L. Lebowitz, and M.H. Kalos, ibid. 43, 282 (1979).

[5] D. Fritter, C.M. Knobler, and D.A. Beysens, Phys. Rev.
A 43, 2858 (1991).

[6] (a) D.J. Robinson and J.C. Earnshaw, Phys. Rev. A 46,
2045 (1992); (b) 46, 2055 (1992); (c) 46, 2065 (1992).

[7] A.J. Hurd, J. Phys. A 18, L1055 (1985).
[8] F.P. Preparata and M.I. Shamos, Computational Geom-

etry (Springer-Verlag, New York, 1985), Chap. 4.
[9] J.S. Langer, in Solids Far from Equilibrium, edited by C.

Godreche (Cambridge Univ. Press, Cambridge, 1991),p.
297.

[10] J. Bibette, T.G. Mason, H. Gang, and D.A. Weitz, Phys.
Rev. Lett. 69, 981 (1992).

[11] D. Asnaghi, M. Carpineti, M. Giglio, and M. Sozzi, Phys.
Rev. A 45, 1018 (1992).

[12 D.J. Robinson and J.C. Earnshaw (to be published).
[13 P.W. Rouw, A.T.J.M. Wouterson, B.J. Ackerson, and

C.G. de Kruif, Physica (Amsterdam) 156A, 876 (1989).

718


