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Two-Color Coherent Control of H2+ Photodissociation in Intense Laser Fields
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We study the multiphoton dissociation of H2+ by a coherent superposition of an intense short pulsed
laser radiation and one of its harmonics (second or third), in a phase-locked regime. We show that the
total dissociation probability, the energy distribution, and the direction of ejection of the protons are very
sensitive to the relative phase of the two radiations. A high degree of control may thus be achieved for
the branching ratio between dissociation via bond-softening and above-threshold dissociation, in the
realm of current experimental capabilities.

PACS numbers: 33.80.6j, 33.80.Wz, 34.50.Rk

Molecular dissociation in strong laser fields has been
actively investigated in the past few years, both experi-
mentally and theoretically. Several interesting processes
have been found: (i) above-threshold dissociation (ATD)
[1,2] with stimulated emission as well as multiphoton ab-
sorption occurring in the dissociation continuum; (ii)
bond softening, [2,3] when a potential barrier in the
dressed potential curves is sufficiently lowered by the ra-
diative interaction that the initial vibrational level be-
comes unbound; (iii) suppression of dissociation, or sta-
bilization [41 due to temporary vibrational trapping in

upper potential wells in the dressed potential curves [5].
The relative importance of these three competing process-
es depends on the initial vibrational level, the laser inten-
sity and wavelength, and the pulse duration. From the
existing studies the ATD process appears to be the
"loser, " at least when starting from a mixture of vibra-
tional levels, because dissociation by bond softening is

very rapid as soon as the potential barrier can be over-
passed.

We show in this Letter that ATD in H2+ can be
strongly enhanced by combining the laser radiation with
one of its harmonics and varying the relative phase be-
tween the two radiations, in a phase-locked regime. It
has been already demonstrated that the coherent superpo-
sition of two difTerent frequencies leads to interesting new
phenomena in multiphonon atomic ionization [6-9],
where the total ionization rate, the electron angular, and
energy distribution [9] depend strongly on the relative in-

tensity and phase of the two radiations. Although the
mechanisms are distinctly diAerent here, we find that the
same type of behavior should be observable for multipho-
ton dissociation, including a pronounced asymmetry in

the direction of proton ejection, for the case of even
(second) harmonic where g and u symmetries can inter-
fere with the same proton energy group. This work ex-
tends to strong-field and nonperturbative treatments of
various proposals [10] that weak-field photodissociation
and predissociation might be controlled by a coherent su-

perposition of two phase-related radiations. Our theoreti-
cal study is designed to present realistic predictions con-

H++ H (1s) + s(nI, np, ), (2)

which already shows its complexity with respect to one-
color dissociation: Each proton energy group may result
from the absorption or stimulated emission of diAerent
combinations (nI, npp) of photons with the fundamental or
harmonic frequencies. In addition, for the case of even
(second here) harmonic both the u and g dissociation
may lead to the same proton energy (e.g. , nI =2, g sym-
metry and np, =1, u symmetry). This intrinsic many-
channel aspect will favor interference eAects which are
shown below to dominate the whole process and are very
sensitive to phase control. We chose the wavelength 780
nm, in the frequency domain of the Ti:sapphire laser
which can deliver intense short pulses (in the range of
10' W/cm, 150 fs) and is presently used by several
groups of experimentators. For this wavelength, starting
from the initial vibrational level v = 1, the minimum
number of photons required for dissociation by the funda-
mental radiation alone is ny=2, while dissociation may
occur with absorption of a single photon of the second
(390 nm) or the third (260 nm) harmonic.

Our calculations only include the radiative coupling, in

the dipole length representation, between the attractive

cerning the coherent control of H2 dissociation, within
the realm of current experimental capabilities.

Using the splitting technique of the short-time propa-
gator [11], we solve the time-dependent Schrodinger
equation for H2+ in the classical electric field

E(t) =f(t) [EIcos(toIt)+Eh cos(coht+p)]e,

with cup =2coy for the second and mp =3coy for the third
harmonic (field amplitude Ep, ), combined with the funda-
mental radiation (amplitude EI). Both frequencies are
linearly polarized along c. The pulse shape is approxi-
mated by the Gaussian-like expression f(t) =sin (prt/

2T~), with total pulse duration 2T~.
The two-color dissociation process may be schematized

as

H2+(Iso', J,M, U)+nIQcoI+ ptp, /cod
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TABLE I. H2+ total dissociation probability for a 150 fs
laser pulse (total pulse duration 2TI, =300 fs). II, Ii„XI, and X

are the intensities and wavelengths of the fundamental and har-
monic radiations. Initial vibrational level is v =1. (a) Results
for the second harmonic with different relative phase p, com-
pared to the one-color results. (b) Same for the third harmonic.
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FIG. 1. Maximum laser intensity reached during the pulse as
a function of the relative phase for the third (solid line,
Ii, =Sx10'2 W/cm2) and the second harmonic (dotted line,
Ii, =3x10' W/cm ), with XI=780 nm and II=10' W/cm .

ground state 1sag and the repulsive first excited state
2pa„of H2+. We also ignore the ionization of H2+,
based on specific calculations of the ionization rate for
the conditions of this paper, using codes developed by
Krause, Schafer, and Kulander [12]. The laser parame-
ters in our calculations avoid excessive competition with
ionization as predicted by Chelkowski, Zuo, and Ban-
drauk [13] for stronger fields and shorter wavelengths.

It is now well established [2,14] that strong field disso-
ciation with a linearly polarized laser yields fragments
strongly oriented along the polarization vector e. The
ions are detected in two groups ("forward" and "back-
ward") if the detector is set on the polarization axis. This
alignment results from optical pumping (probably al-
ready achieved during the ionization step from the neu-
tral) to [high J, low Mj rotational states in Eq. (2) which
are dictated by the magnitude of the Rabi frequency
[15]. This justifies our constraining the interatomic coor-
dinate R along e: Defining cosO=R e, we can restrict
the angular distribution analysis to the emission angles
8 =0 and 8 =x, with respect to the polarization (and
detection) axis.

In our framework of approximations the total wave
function for H2+ is thus expressed as

N(r, R, t) =pg(r, R)Fg(R, 8, t)+p„(r,R)F„(R,8, t), (3)

where pg and p„are the Iscsg and 2pcr„electronic wave
functions and Fg, F„summarize the symmetrized rovibra-
tional nuclear wave functions. The radiative coupling
E(t)pg„(R)cos8 depends on orientation and the present
calculations are all performed with 0=0, and H2+ per-
fectly aligned in the field. We have also performed calcu-
lations with Fg and F„expanded in a complete rotational

basis set and have found quantitative confirmation of this
alignment eAect, for both one- and two-color interactions.
These results validate the present model and will be
presented in a longer paper.

Table I shows that adding the second or third harmon-
ic, even with a weak intensity, results in a dramatic
enhancement of the total dissociation probability with

respect to the one-color results. The magnitude and the
phase dependence of these results demonstrate a very dis-
tinct diAerence between ionization and dissociation. At
these wavelengths the global ionization process is well de-
scribed by a tunneling model [8] and depends primarily
on the maximum field strength displayed in Fig. 1,
amplified by the nonlinearity of the process. Certainly
here, the symmetry of the electric field with respect to the
phase is reproduced in the dissociation probability (e.g. , p
and p+tt for the second harmonic). However, the phase
dependence of the total probability is not simply related
to the maximum value of the electric field [compare
Table I(a) and Fig. 1], a first indication that dissociation
occurs via interfering paths combining the two radiations
and is closer to the less understood multiphoton limit in

ionization, in the nonperturbative regime.
This appears more clearly from the proton energy dis-

tribution shown in Fig. 2 for the third harmonic with
diAerent phases. Each spectrum consists of three main
peaks spaced by the energy htoI/2=0. 8 eV. The second
and third peaks are due to ATD with excess-photon ener-

gy equally shared between H and H+. In terms of net
numbers (n/, nt, ) of absorbed photons [see Eq. (2)], the
three successive peaks could be labeled as I: (2,0); II:
(3,0) degenerate with (0, 1); III: (4,0) degenerate with

(1,1). They correspond to the asymptotic dissociation
limits I, II, III in Fig. 3, which shows the adiabatic field-
dressed potential curves obtained by diagonalizing the
time-independent two-color Floquet Hamilton ian with
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(1/J2) [yi, (r —R/2)++y„(r+R/2)],

y„—(1/J2) [y„(r—R/2)——yi, (r+ R/2)],
(4)
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FIG. 4. (a) Forward (8=0) and backward (9=+) proton ki-
netic energy distribution for the second harmonic with +=0.
(b) Same for q&=ac/2. The laser parameters are Xf =780 nm,
Tz =150 fs, If =2&10'3 W/cm, and II, =2&&10'2 W/cm2.
Here the initial vibrational level is v =3. The total dissociation
is 3.6% for p =0 and 0.4% for p =z/2.
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