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Topological Transitions in Berry's Phase Interference Effects
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We consider a topological transition which is an abrupt variation from vr to zero of Berry s phase,
in the case when it is a phase diG'erence of interfering waves. It manifests itself in a steplike current—
magnetic field and current —gate voltage characteristics predicted for in-plane magnetoresistance of
rings in noncentrosymmetric materials. Transition points occur at external magnetic fields equal
to momentum-dependent effective magnetic fields for different tunneling channels of a quasi-one-
dimensional ring. Similar effects due to the angular anisotropy of electron g factor are considered.

PACS numbers: 03.65.Bz, 02.40.—k, 71.70.Ej, 77.22.Jp

The concept of Berry's phase [1] and its generalizations
[2—4] has been a subject of considerable interest during
recent years in different areas of modern physics [5—7].
The topological phases are connected to the cyclic evolu-
tion of physical systems in which the state of a system or
the parameters it is described by return to the original
values after an evolution. These topological phases are
observable by interference: The system whose parame-
ters were changed is recombined with another that was
separated from the fi.rst one at an earlier time and whose
parameters were varied in a different way. The familiar
example of the topological phase factor is an extra phase
acquired by the spin wave function in addition to a stan-
dard dynamical phase in a magnetic field with a constant
value and a direction which follows adiabatically a closed
trajectory. Recently Aronov and the present author [8]
have demonstrated the existence of the spin-orbit Berry's
phase, which arises from the adiabatical variation of the
electron momentum in low dimensional or reduced sym-
metry conductors. The electron spin in these systems is
influenced by the momentum-dependent effective mag-
netic field. For an electron moving in a ring the momen-
tum and the corresponding magnetic field follow a closed
path, which implies the topological phase effect.

Spin Berry's phase is proportinal to a solid angle sub-
tended by a magnetic field in a space. A special case
occurs when a circuit around which the magnetic field is
transported is confined to a plane. Actually this case was
studied by Herzberg and Lonquet-Higgins [9] in connec-

tion with a sign change of eigenfunctions of real symmet-
ric matrices around a degeneracy. In the present paper I
discuss such a situation from a completely difFerent point
of view. As it was considered by Berry [1], for fermions
the topological phase is equal to the odd number of 7r if a
magnetic field trajectory circuit is confi. ned to a plane and
encloses the point of degeneracy (the point at which the
magnetic field is zero). Therefore, for an experiment in
which the difFerence in the dynamical phase of recombin-
ing waves is compensated, the interference is destructive.
Now imagine that the environment of the interference ex-
periment is suddenly changed and the plane curve which
is subtended by the magnetic field during an evolution
does not encircle the degeneracy any more. This situa-
tion can be easily achieved by applying a static in-plane
magnetic field whose value is more than an amplitude of
the magnetic field rotating within the same plane. Then,
Berry's phase acquired by a fermion wave function drops
from the odd number of vr to zero and the character of
the interference immediately changes from destructive to
constructive. This phenomenon is considered here as a
topological transition. I demonstrate that such a tran-
sition naturally arises in the in-plane magnetoresistance
of rings in noncentrosymmetric materials and predict the
steplike current —magnetic field, current —gate voltage and
current —uniaxial strain characteristics. Finally, I deal
with Berry's phase due to the angular anisotropy of the
electron g factor, leading to similar effects.

Before considering the topological transitions in mag-
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netoresistance of rings I will describe this effect for a
model example of the spin evolution in the in-plane mag-
netic field. Consider the time-dependent Hamiltonian

& = gp, a(B.o
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+ Bi) + o &Bo sin wt

which describes the spin
&

motion in a magnetic field
having a static and an alternating component within a
plane (x, y). In Eq. (1) o, are the spin Pauli matrices, g
is the electron g factor, p is the Bohr magneton, and ~ is
a frequency of the rotating field. A natural basis for 'H(t)
consists of ln+(t)) and ln (t)) that satisfy 'R(t)lny(t)) =
E~ (t) l

n~ (t) ) . The energies Ey (t) are
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"& ', and the corresponding eigenstates have a form
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Here D,~
= (n, l &, ln~). The coeflicients D,~ are given by

My cos(dt + (dp
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D + ——D+ —— D++. If a, (—t = 0) = b,~ and a state
mixing during the evolution within a time interval [0, ti]
is negligible the system would remain in an eigenstate of
H(t) to a good approximation, and we obtain

a~ (t) = a~ (0) exp l

— D~~dt
l (6)

for t 6 [O, ti]. Using Eq. (5) and substituting a variable
z = expiwt we can express the integral in the exponent

2m

of Eq. (6) I = fo D~~(t)dt for a cyclic motion as
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The integral on the right of Eq. (7) is taken along the
unit circle enclosing two isolated singularities for uo P ai
(one more singularity is outside the unit circle) and one
isolated singularity zp ——0 for the case wp ——w~. Taking a
sum of residues within a circle we have I = vri if uq ( wp,
I = "~' if ~z = ~p and I = 0 if wq & wp.

The value of integral I determines an extra phase in
addition to the dynamical phase during a cycle of evolu-

ln~(t)) =
V 2 i h(urz+uro exp —scdt) )

If we write the normalized state l4(t)) evolving according
to Schrodinger's equation ihc) 4(t))/Ot = Vt'(t)l@(t)) in
a form l@(t)) = P+ a~(t) exp I

—
& f E~(t)dt ln~(t)), we

obtain the following system of equations for a~ (t):
BG+

a+D++ ——a D+ exp — (E+ —E )dt,

tion, which is Berry s phase p~ by definition. Equation
(7) gives a mathematical argument for the existence of a
topological transition from destructive (p~ = a) to con-
structive (pre = 0) interference in Berry's phase coherent
experiment. The result coincides with a consideration
from the geometric point of view. If ap & ~j the mag-
netic field trajectory circuit does not enclose the degen-
eracy and is not seen from it. If ap ) a~ the degeneracy
is encircled and the measure of a view of the circuit is
+2+. Berry's phase for spin z is a half of an angle that
trajectory subtends at degeneracy and we have p@ ——0
or &p~ = kn that is in complete agreement with [1]. The
intermediate case wp ——u~ turns out to be very interest-
ing. It can also be interpreted from the topological point
of view. Degeneracy is crossed by the trajectory circuit.
Staying at degeneracy we cannot see the trajectory look-
ing at one of the half planes and be able to see the whole
circuit looking to another side. So, the measure of a view
of a circuit is +x and the result z for the spin z in Eq. (7)
is obvious. For each rotation of the alternating magnetic
field by 2x rad the wave function rotates by ~ rad. Un-
fortunately this fine mathematical result seems to have
low chances for being detected in a rea, l experiment. In a
physical reality we cannot force two values to be exactly
equal, and only the fact of a transition from p~ = ~ to
p~ = 0 can be measured.

Now we are to prove that the state mixing for our sys-
tem can be really negligible and to find out what are the
conditions to be met in this situation. Applying the time-
dependent perturbation theory to the system of equa-
tions (4) we obtain that, say, for a+(0) = 1, a (0) = 0
the probability P+ to find a system in a state ln (t))
at the time t = t~ is given by

P (& ) D +exp— (E+ —E )d7. (8)

If the probability P+ &( 1 the state mixing is unim-
portant; the system remains in a state ln+(t)) and the
concept of Berry's phase is applicable. This condition has
the simplest form in the case u~ ——0 when D+ and E~
are time independent. In this situation the state mixing is
negligible if u « up and this is the adiabatical condition
which was required for validity of consideration in [8]. If
Ey and D+ do depend on time, the conventional con-
dition of the adiabatic approximation applicability and
the possibility to neglect the mixing of states is

h, D+ (t) ~no
max

E+(t) —E-(t) 2( — .)'
For our purposes this restriction turns out to be too
strong. Indeed, even for the most crucial case ~q ——~p,
in which the adiabatic approximation breaks down for
t = —,the condition P+ (& 1 has a form

y1 .Mo
dyexp 8s dc~ cess~)—(d 1,

p
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which easily follows from (2), (5), and (8). Using the
representation of the integrand in a form of Fourier series
with Bessel functions as coefIicients,

exp +iz sin P = Jc (z) + 2 ) Jqg (z) cos 2k'
k=1

+ 2i ) J2y+r (z) sin (2k + 1)P, (11)
Jc=0

we see that for one cycle of magnetic field rotation y1 ——vr

the condition (10) is satisfied if z )) 1. Moreover, for
10 Eq. (10) is satisfied for any yi within the in-

terval [0, vr] including the vicinity of y = 2, which is the
point of degeneracy. For a suKciently large number of
cycles the condition of nonessential state mixing always
breaks, regardless of how slow the alternating field ro-
tates. Likely, the interesting effects take place within
a low number of cycles, and in this situation mixing is
actually negligible if rotation is slow:

—&) &. (12)

The cases wp ) u1 and ap ( (d1 are more secure in a
sense that the state mixing can always be prevented by
satisfying the condition (9). So, for slow enough rotation
(12) the concept of Berry's phase can be applied at any
value of the static magnetic field, and the topological
transition is to be rather sharp.

Consider a quasi-one-dimensional ring of radius r de-
fined electrostatically in the two-dimensional electron gas
(2DEG) of a semiconductor heterostructure. The ef-
fects on rings induced by Berry's phase were discussed
by Loss, Goldbart, and Balatsky in connection with per-
sistent currents [10] and by Stern [ll] in connection with
mesoscopic conductivity and motive forces in a ring.
The effect of spin-orbit Berry's phase [8] was studied
for Aharonov-Bohm geometry in the tunneling of elec-
trons traversing a ring coupled to current leads. Spin-
orbit topological phase results in destructive interfer-
ence, negative rnagnetoresistance and produces the shift
of Aharonov-Bohm oscillations. In the absence of the
spin-orbit effects the oscillations of transparancy of the
normal metal rings were studied in detail by Buttiker,
Imry, and Azbel [12].

Here I demonstrate that spin-orbit interaction mani-
fests itself in topological transitions leading to steplike
current —magnetic field dependence in the in-plane mag-
netoresistance of rings. The effective electron Hamil-
tonian of 2DEG includes the kinetic energy, Zeemann's
term in a static magnetic field, and the linear in momen-
tum p term, describing the spin-orbit splitting of electron
states at p f 0. If the normal to the heterostructure in-

terface z
~~ (ill), the Hamiltonian takes the form

2+ 2" + hw, cr + hp [cr x p], , (13)
2m

where m is the effective mass, w, is the Larmor frequency,
and P is the spin-orbit splitting coefficient. We assume

that a static in-plane magnetic G.eld affects only the elec-
tron spin; as for magnetic length I~ && a, a is the quan-
tum well width and the orbital effects are absent. Con-
sider first, for simplicity, the case of a one-channel ring.
If the electron wavelength A = h jp is much less than
the circumference of a ring L = 27rr (p is the momen-
tum along the ring) an electron can be described qua-
siclassically. In the zeroth order it is a classical rotator
with the frequency 0 = "„, and the wave function is
4' (p, t) = 4„(&p, t) y (p, t), iII„(p, t) is the rotator wave
function, and y is a spinor. Inserting i' (p, t) into the
time-dependent Schrodinger equation with the Hamilto-
nian (13) in the first order to 5 we obtain

ih = [o'~ (ha, + hpmrA cos At) + cr&hpmr sin Bt] y,
Bg
Bt

(14)

which is exactly Eq. (1): h~, corresponds to gpBr and
hPmrO replaces gpBo, 0 = w. Actually, the equivalence
between the systems described by (1) and (14) is obvi-
ous, because the effective field is transported around a
circle while the electron momentum subtends a closed
trajectory in a ring. Therefore, considering the electrons
in a ring described by (13), we can apply the concept of
Berry's phase and all the results obtained for Eq. (1). If
the upper and the lower branches traversed by an elec-
tron corning from the lead are symmetric, the dynami-
cal phase factors obtained in these branches are equal to
each other. Consequently, the phase difference between
the amplitudes interfering at the second junction of a ring
to a lead is equal to Berry's phase [13]. For the strong
coupling limit [14], in which the junction is completely
transparent for electrons and a wave of unit amplitude
coming from the lead is transmitted into the two branches
with equal amplitudes ~2, the transparancy of a ring is
zero for p~ ——kyar and equal to unity for y~ ——0. There-
fore the conductance is zero in the former and is equal
to 2„ in the latter case. It undergoes a topological tran-

2
sition and changes its value from 0 to

&&
at the static

magnetic field equal to the amplitude of the momentum-
dependent effective magnetic field. Increasing the static
magnetic field we change the character of the interference
from destructive to constructive in more and more chan-
nels, and the topological transitions for these channels
result in steplike current —magnetic field characteristics.
The points of transitions are determined by the values
of momentum in the channels and, consequently, by the
potential confinement of a ring.

For instance, if a static magnetic field is applied along
the x direction and a current lead is parallel to the di-
rection y, the value of momentum of the incident elec-

tron coming to a ring is p„= 2(mPh)2 + 2m' +
1

2/(mPh)4 + 2(mPh)2m'+ (mba, )2, where the signs

+ and —correspond to the opposite spin projections and
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e = EF —E„ is the difference between the Fermi energy
EI; and the energy of size quantization E„. The strong
coupling limit implies nearly the adiabatic junction of a
lead to a ring, which is passed by an electron without
spin flip and the mixing of different channels. The con-
finement potential of the leads and of the branches of the
ring is assumed to be the same, and therefore, the value of
the effective spin-orbit magnetic Beld for the nth channel
is determined by p„. For a given energy the spin up and
spin down electrons are influenced by different effective
fields and each channel manifests itself in two steps on
the conductance curve. The energy E„,which describes
p„, is determined by the confinement of the 2D layer and
by the confinement of a ring with leads within this layer.
Its form may vary between a harmonic oscillator and a
rectangular square well potential, and the spacing of the
topological transition points may be different.

The condition of the slow enough rotation of the effec-
tive field, according to (1'2) and (14), is hPm, r )) 1 and
the rings of a sufficiently large size can satisfy it. The up-
per limit of the circumference of a ring is the mean free
path, because we study the ballistic motion of electrons
in order to avoid the state mixing due to the elastic scat-
tering [15]. Thus, we also neglect the spin-flip processes
in a ring and the spin up and down electrons traverse the
ring independently.

The estimations show that for an InAs ring of 5 p,m
radius and 60 nm width (m = 0.023mo, g = —15, the
spin-orbit coefficient h P = 6 x 10 o eVcm [16], the
2D electron density is taken as n, = 10 cm, and
E~ = 0.1 eV) four levels within the first level of size
quantization in 2DEG may contribute to the conductance
and eight transition points may be observable (due to the
spin splitting) within the interval of magnetic fields 1—2
T. Additional experimental possibilities are coming from
the dependence of the spin-orbit coefficient and effective
magnetic field on the uniaxial strain or on the external
electric field [in our geometry both applied parallel to
(111),perpendicular to the plane of a ring]. Correspond-
ingly, the magnetic field can be kept constant, and the
transitions can be investigated for a dependence of the
conductance on the gate voltage or on the deformation.

The described topological transitions can take place
not only on rings in noncentrosymmetric materials, but
also in multiconnected samples of any symmetry due to
the angular anisotropy of the electron g factor. The ef-
fective electron Hamiltonian in this case has a form

= p'
'H = + gran B ~ gi(crp)(pH)2m

+ g2(~ x p). ( p x &)'
The two last terms can be derived, for instance, for Dirac
electrons using the Foldy-Wouthuyzen transformation
[17], if we take into account the terms of order to (—)s.
For free electrons the momentum-dependent fields of this
type are always negligible in comparison with a field pro-

portional to a conventional g value. However, the promis-
ing situation occurs in the semiconductor solid solutions
or in layered structures formed by the compounds with
the opposite signs of the electron g factor. Several solid
solutions have a g value close to zero within some interval
of concentrations of ingredients [18]. In this case the am-
plitude of the effective field determined by gi and g2 can
be comparable with one described by g. Representing the
electron in a ring as a classical rotator, we obtain that
the spin motion for H ]] z is governed by Eq. (1) with

gB, = g+ (~' ~')p' B gB = ~~'+~'~p'B ~ = ~
Varying the electron momentum [19] we change the am-
plitude of the alternating field in comparison with a static
one and get the topological transitions due to angular
anisotropy of the electron g factor. A solid solution is
characterized by a smaller mean free path than a pure
material, and the ring of a smaller radius is to be chosen.
The condition of the negligible mixing of states needed
for applicability of Berry'phase concept, w (( "& ', can
be preserved by increasing the value of magnetic field
B. Note that the present effect results in the steps of
conductance of a ring, when the linear in the in-plane
momentum effective magnetic field is absent.

In summary, a concept of a topological transition is in-
troduced. This transition is a sudden change of phase dif-
ference of interfering waves connected with Berry's phase.
It results in a steplike conductance characteristic for the
in-plane magnetoresistance of rings.
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