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Spreading of Droplets on a Solid Surface
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We discuss a class of similarity solutions to the hydrodynamic equations that describe droplets spread-
ing under capillarity. The spreading time scale of these solutions exhibits a subtle dependence on the mi-
croscopic length scale around the contact line. We show that such solutions are linearly stable to small
perturbations away from the contact line, justifying the universality of experimental spreading laws. We
discuss the transition between the two macroscopic spreading regimes. Our prediction for the transition

time is consistent with experimental data.
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Liquid spreading on a solid surface [1] arises in many
practical situations, ranging from the design of paints to
oil recovery techniques. From the theoretical side, the
dynamics of the liquid-solid interface raises interesting
questions involving the physics of different length scales.
It is well known [2] that a traditional hydrodynamic
description—the Navier Stokes equation coupled with
“no slip” boundary conditions— leads to a divergence in
the energy dissipated at the contact line. Another impor-
tant feature is that near the contact line where the film
thickness is a few angstroms hydrodynamics itself breaks
down. Two remedies have been proposed for cutting off
the divergence: inclusion of long range van der Waals
forces [1] and relaxing the *“no slip” boundary conditions.
Such “slip” arises in certain physical situations, such as
when the surface is porous [3] or for polymer melts [1].
There is still much controversy over how (not) to treat
the breakdown of hydrodynamics [4,5].

In the special case of complete wetting fluids, droplets
exhibit hydrodynamic effects characteristic of both length
scales. On the macroscopic scale, there are spreading
laws which are universal, independent of the physics of
the contact line. “Tanner’s law” [6], which applies when
capillarity dominates the spreading, dictates that

R@)=c 0, (1a)
O =ca2R , (1b)
03 =ciR, (1¢c)

where R () is the radius of the droplet, 8o is the contact
angle near the edge of the drop, and 6, is the maximum
height of the drop divided by its radius. The last two
Tanner’s laws (1b) and (1c) are usually grouped togeth-
er, but they are actually not the same, for (1b) depends
on the detailed shape of the droplet whereas (1c) does
not. When gravitational forces dominate R(z)=rqt!/8
[71. Many experiments verify the universality of the ex-

[12] discovered a purely microscopic phenomenon, that
the edge of a spreading droplet emits a thin layer of fluid.
This “precursor film” has been observed in many subse-
quent experiments [9,13].

A significant question, not requiring detailed knowl-
edge of the physics near the contact line, is to understand
the universality of the macroscopic spreading laws. Dus-
san [14] constructed solutions for different slip models
and showed that the solutions are universal away from
the contact line, other than a weak dependence on the slip
length. Hervet and de Gennes [15] proposed a theory in
which a van der Waals region near the contact line
matches a solution of the macroscopic equations. Their
work demonstrates that the Tanner law (1b) is a conse-
quence of the matching, and moreover that the coefficient
¢, is nonuniversal. However, to date we know of no study
of the effect of dynamical perturbations to the spreading.

In this Letter we study a similarity solution to the hy-
drodynamic equations, originally introduced by Starov
[16], that describes the macroscopic droplet with time
dependences given by Tanner’s laws. We show that there
is actually a one parameter family of these solutions, the
parameter being essentially the microscopic length scale.
The consequence of this is that the coefficients ¢; and c3
in Tanner’s law are nonuniversal. Next we show that the
Starov solution is linearly stable to perturbations away
from the contact line. This provides a dynamic justifi-
cation for the universality of Tanner’s laws. Finally we
discuss the transition between the two macroscopic
spreading regimes. We derive a formula for the transi-
tion time which agrees with the experimental data of Ca-
zabat and Cohen-Stuart [11]. Our explanation of the
transition combined with the stability arguments clarifies
the nonuniversal characteristics observed in the experi-
ments.

The hydrodynamic equation for the height A (r,o,t) of
the droplet is [17]

ponents in these spreading laws [8-11]. In 1919 Hardy h,+-§i—v- {h3V(VZh)+Flh,r,e,t1} =0. )
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The derivation uses a lubrication approximation of the
Navier-Stokes equation, neglecting inertial terms. Capil-
larity dominates the pressure field. The function F con-
tains additional physical effects. In general, F= — (pg/
y)h3Vh+G where the first term accounts for gravitation-
al forces, and G is only important near the contact line,
when # is of order of the microscopic length scale.

Our first step is to construct a solution for a macro-
scopic droplet spreading under capillarity, so that we
neglect F. It is convenient to nondimensionalize (2) by
setting A(r) =hoh(r,t), r=nror, and t =QGuiro/y) (Aro/
ho) 7, where rq is the initial drop radius, and A is the ini-
tial height. A is a function of the microscopic length
scale, which is fixed by constraints on the similarity solu-
tion, as we discuss below. The presence of A is a conse-
quence of a weak dependence of the macroscopic solu-
tions on microscopic length scale, a dependence which is
expected due to the previous work of Dussan [14] and de
Gennes [1]. For the remainder of this Letter, all refer-
ences to macroscopic and microscopic length scales
should be interpreted through this rescaling. Also, for
convenience, we assume that time starts at 1t =1.

Following Starov [16], we seek a radially symmetric
similarity solution to

he=—V-h3V(V?h). 3)

Volume conservation constrains the similarity solution to
have the form h(r,r) =(1/t'*)H(r/t '/'9), which satisfies
Tanner’s laws. H satisfies

n/10=H?3,(,+n"DH,. 4)

For A to be smooth, we require H to be even in n. Furth-
ermore, we set H(0)=1 and H,,(0)=—c, yielding a
“spherical cap” H~1— ¥ ¢n? for the center of the drop.

Remarkably, there are no solutions of (4) satisfying
the given boundary conditions for which H goes to zero at
a finite value of n [18]. For a fixed ¢, H(n) has a
minimum height A at a value of n_that we denote by no
(see Fig. 1). Near no, H(n)=hFIl(no—n)/hl, where
F(x) has the asymptotic behavior F(x)~x? for large
negative x and

F(x)~xllog(x)]1'/3 (5)

for large positive x (see inset). A physical droplet, unlike
this similarity solution, has compact support. The only
reasonable conclusion is that forces other than capillarity
must become important when & is of order A. That is,
microscopic interactions control the shape of the droplet
to the right of 1. Joanny [19] showed that it is possible
to match the Starov solution to a van der Waals precur-
sor film. In fact the functional form (5) near the edge of
the Starov solution is the same asymptotic behavior used
by Hervet and de Gennes [15] to justify the Tanner law
R~62.. Indeed the Starov solution also gives Ooc
~17%31og(ho/h), a Tanner law with a nonuniversal log-
arithmic correction. Chen and Wada verified the
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FIG. 1. Numerically integrated solution to similarity equa-

tion; here H,,(0) =—0.5. Inset: Blowup of pinch region.

x[log(x)1'” behavior near the edge of a spreading drop-

let in an experiment [10].

The microscopic length scale must be the same order as
h. Fixing A fixes ¢, and thus A (=1/no). The prefactors
in the Tanner laws (1a) and (Ic) are thus nonuniversal.
The essential point is that straightforward dimensional
analysis of the prefactors breaks down due to the pres-
ence of the additional length scale 4 [20]. In Fig. 2 we
show the variation of A with A. Note that as A#— 0,
A— oo, indicating that the time scale becomes signifi-
cantly different from that predicted by a dimensional
analysis without A. In a typical experiment (a 1 mm drop
spreading on a smooth surface) h~10"3 so that A is
around 1.15.

We now consider perturbations of hg, the Starov solu-
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FIG. 2. A as a function of the minimum height # as deter-
mined by numerically integrating the similarity equation for
different values of H,,(0).



VOLUME 71, NUMBER 4

PHYSICAL REVIEW LETTERS

26 JULY 1993

tion modified by microscopics near k. First, we show that
hs is linearly stable to perturbations away from the con-
tact line. Let A(r,o,t) =hs(r,t)+w(r,o,t) solve (3) on
the macroscopic part of the drop. We assume that w is a
small perturbation with support contained inside the mac-
roscopic droplet for all time. The linearized evolution
equation for w is

wy + V- BwhZIV(V2h) B + V- {h2IVIVIw) 1} =0. (6)

Stability of the Starov solution follows from the fact
that [|Vw|2dxdy dies much faster than [1Vhs|%dx dy
[21]. The proof is as follows: Taking the inner product
of the gradient of (6) with Vw and integrating by parts
gives

d 1
Z5||vW||gz=—fawth(vvzhs)-vvzw

= 1rg*V¥2wl| 2. @)
Integrating by parts and using the fact that h3VVZhg
=£r/10¢ on the support of w gives

d 1 3
713||VW”22= ";”VWHfZ_ [|hd?VV2w||?.. (8)
Thus,

VW O 2=<t 73] vw (-, D],

so that ||Vw(-,2)||,2 dies faster than ||Vhs(-,0)]|,2.
Also, if

w(y,e,t) ~t"sin(nxy) sin(ge),

then y~ —0.6 —|P(n,q)|, where P(n,q) is a polynomial
quartic in both n and g. The decay rate —y increases
rapidly with the wave number of the perturbation.

The stability of the Starov solution justifies the selec-
tion of Tanner’s laws for the macroscopic dynamics [22].
A droplet encounters many natural perturbations during
its spreading, ranging from impurities on the liquid-solid
interface to capillary wave excitations from the solid sur-
face [23]. Whether the excitations have a characteristic
wavelength of um or A is inconsequential for the macro-
scopic dynamics, as both die off very quickly.

The stability argument breaks down for perturbations
which do not vanish at the edge of the Starov solution.
Perturbations of this type are dynamically significant in a
common macroscopic spreading phenomenon, the transi-
tion between the two macroscopic spreading regimes.
The equation governing the transition is

hl +V'

—7—h3(v(v2h))] =PLy. (h3vp). (9)
3u 3u

We consider an initial droplet in the Tanner’s law regime.
The gravitational term can be viewed as a source term
which produces perturbations of the Starov solution.

The size of perturbation w produced by the source can
be estimated by decomposing h =hgs+ w, as above. Plug-

ging into (9) gives that w,~ (pg/u)V- (hdVhg), or w
~V/1%, where V is the volume of the drop and Lcap
=-/y/pg is the capillary length. The gravitational term
tends to flatten out the drop, causing fluid to flow from
the center of the drop to the edges. Near the edge, the
perturbations compound. The size of the compounded
perturbation is approximately

f’gt_o_lﬁ__,_l/_L (10)

where 7 is a time scale associated with the compounding.
The time scale 7 is independent of the volume of the
droplet, and depends on both vu?/ypg and microscopic
parameters. The transition occurs when the size of the
compounded perturbation is comparable to As or when

1/5
fi} ~1. 1)
Y

V3/5t 6/5

2
lcapT

This formula for the transition time is consistent with
experimental data on the transition by Cazabat and
Cohen-Stuart [11]. They find transition times ranging
from around 50 to 500 s with volumes ranging from 37.9
to 0.35 ul, suggesting that the transition time varies ap-
proximately like t =b/~/V. Moreover they discover that
the prefactor b changes for fluids with different micro-
scopic characteristics. This feature is consistent with the
fact that the transition is controlled by perturbations
compounding near the edge of the drop, where our stabil-
ity analysis breaks down.

Finally we mention the work of Brochard-Wyart,
Redon, and collaborators [24]. They study quasisteady
solutions of Eq. (9) and compare with drop profiles mea-
sured from experiment, with excellent agreement. Their
analysis shows that the drop profiles are not self-similar
during the transition, complicating the time dependence.
Equations (10) and (11) quantify the lack of self-
similarity by considering the effects of perturbations pro-
duced by gravity explicitly.
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