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Spreading of Droplets on a Solid Surface
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We discuss a class of similarity solutions to the hydrodynamic equations that describe droplets spread-
ing under capillarity. The spreading time scale of these solutions exhibits a subtle dependence on the mi-
croscopic length scale around the contact line. We show that such solutions are linearly stable to small
perturbations away from the contact line, justifying the universality of experimental spreading laws. We
discuss the transition between the two macroscopic spreading regimes. Our prediction for the transition
time is consistent with experimental data.
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where R(t) is the radius of the droplet, 8~~ is the contact
angle near the edge of the drop, and OM is the maximum
height of the drop divided by its radius. The last two
Tanner's laws (lb) and (lc) are usually grouped togeth-
er, but they are actually not the same, for (lb) depends
on the detailed shape of the droplet whereas (lc) does
not. When gravitational forces dominate R(t) =rot 'I

[7]. Many experiments verify the universality of the ex-
ponents in these spreading laws [8-11]. In 1919 Hardy

Liquid spreading on a solid surface [1] arises in many
practical situations, ranging from the design of paints to
oil recovery techniques. From the theoretical side, the
dynamics of the liquid-solid interface raises interesting
questions involving the physics of diA'erent length scales.
It is well known [2] that a traditional hydrodynamic
description —the Navier Stokes equation coupled with
"no slip" boundary conditions —leads to a divergence in

the energy dissipated at the contact line. Another impor-
tant feature is that near the contact line where the film
thickness is a few angstroms hydrodynamics itself breaks
down. Two remedies have been proposed for cutting off
the divergence: inclusion of long range van der Waals
forces [1] and relaxing the "no slip" boundary conditions.
Such "slip' arises in certain physical situations, such as
when the surface is porous [3] or for polymer melts [1].
There is still much controversy over how (not) to treat
the breakdown of hydrodynamics [4,5].

In the special case of complete wetting Auids, droplets
exhibit hydrodynamic effects characteristic of both length
scales. On the macroscopic scale, there are spreading
laws which are universal, independent of the physics of
the contact line. "Tanner's law" [6], which applies when
capillarity dominates the spreading, dictates that

[12] discovered a purely microscopic phenomenon, that
the edge of a spreading droplet emits a thin layer of Iluid.
This "precursor film" has been observed in many subse-
quent experiments [9,1 3].

A significant question, not requiring detailed knowl-
edge of the physics near the contact line, is to understand
the universality of the macroscopic spreading laws. Dus-
san [14] constructed solutions for different slip models
and showed that the solutions are universal away from
the contact line, other than a weak dependence on the slip
length. Hervet and de Gennes [15] proposed a theory in

which a van der Waals region near the contact line
matches a solution of the macroscopic equations. Their
work demonstrates that the Tanner law (lb) is a conse-
quence of the matching, and moreover that the coefficient
c2 is nonuniversal. However, to date we know of no study
of the effect of dynamical perturbations to the spreading.

In this Letter we study a similarity solution to the hy-
drodynamic equations, originally introduced by Starov
[16], that describes the macroscopic droplet with time
dependences given by Tanner's laws. We show that there
is actually a one parameter family of these solutions, the
parameter being essentially the microscopic length scale.
The consequence of this is that the coefficients c~ and c3
in Tanner's law are nonuniversal. Next we show that the
Starov solution is linearly stable to perturbations away
from the contact line. This provides a dynamic justifi-
cation for the universality of Tanner's laws. Finally we
discuss the transition between the two macroscopic
spreading regimes. We derive a formula for the transi-
tion time which agrees with the experimental data of Ca-
zabat and Cohen-Stuart [11]. Our explanation of the
transition combined with the stability arguments clarifies
the nonuniversal characteristics observed in the experi-
ments.

The hydrodynamic equation for the height h(r, p, t) of
the droplet is [17]

h, + 7 V [h V(V h)+F[h, r, p, t]] =0.
3p

0031-9007l93/71(4)/593 (4)$06 00
1993 The American Physical Society

593



~UMBER 4yOLUME 71 REVIE LETTERSAL R

2.

26 jvL~ '993

h= —VhV(Vh (3)

solution tothe similarity
"I')

V lume conservation
the form h r,

~ H satisfiesTanner's laws. s

rl /10=H a„(a„q+ ')H„. (4)

Furth-be even in g.be smooth, we req
0)= —c, yie

'
g(0) =1 and H„„

"spherical cap"
1, there are

that we denote yh t a value of g tha
H(q) =hF q, —

i htha a

g1). Near go,
m totic behavior xF(x) has the asymp o

'

negaative x and

ation of theThe derivatio
ne lecting in

on uses
.

ertla
s a lubrica o

'
1 terms. CaPi

tion app

F con-
kes equation, ne

The function
F = —(pg/

larity dom'minates t e pre
sical eftects. In genera,

r ravitation-
dditional p ysica

accounts or grare the first term a
he contact line,

f the microscopic en
is 0 t a "lut'on or

when is
is to construe a

d „11 t,
d' 'n'"n'1It is conven

),
o radiu, d ih 'n't"1 d

function o'ht. X isa
db "n't

f X is a conse-b'1' Th
which is fixe y

resence o i

scopic solu-f hk dependence of a wea
a depen ed nce which is

quence o
c length scale,

[14] and de
OP .

k fD
tions o

f thi Lh ""ndGennes [1].

e
'

e h this rescaling.
ences o

ed throug
=1.

be interprete
e starts at t =

should e
'

e weassum
lla radia yFollowing Starov

similarity solution to

1.2

0.8

0.4

0.0
0.0 0.6 1.2 2.4 3.0

to similarity equa-integrate solution o e ua. l Numerically i
= —05 Ition; here H» (o)= — . .

2.0

f a spreading drop-ar the edge o alo x)] ' behavior near

'1 oint is ath t straight
n due to t e

p
of t p efacto

(
h f )h-on a smoosprea ing

h Starov solu-r erturbations of h, t enow consider perture now

F(x) -x [log(x )] 1/3 (s) 1.7—

let, unlikeA hysical drope
' '

(see inset). p
1 ton has "mp

e ositive x se
m act suppor .

hat f
rit so ution,

other t an
h. That is,

le conclusion is
is of order

of the droplet
ecome impor an

1 the shape o
t it is possib e

co ic interac i

showed t a i

er Waals precur-ntoavander a
h f lf,In fact t e u rm

the same asy
Gennes [15] to j

v solution is
ustify the arvet and de en

solution a so g'
by Herv

Indee
11o-with a nonu

R- e)~.
) a Tanner law w'

verified the
log(ho/h, a a

ction. Chen annd %'ada veriarithmic correction.

I

—7 0
0.5

—21 —14.,(.)—28

i h
'

ht h as deter-inimum eig
h lb numerically integrating

different values of H„„

594



VOLUME 71, NUMBER 4 PH YSICAL REVIEW LETTERS 26 JULY 1993

Stability of the Starov solution follows from the fact
that JlVwl dxdy dies much faster than JlVhsl dxdy
[21]. The proof is as follows: Taking the inner product
of the gradient of (6) with Vw and integrating by parts
gives

—llvwllL2= — 3whs(vv'hs) VV'w
dt 2

—
l
lhs"vv'wllL2. (7)

Integrating by parts and using the fact that h~VV h~
=rr/10t on the support of w gives

" —' llvwllL, = —'
llvwll, ' —llhs3/2vv'wll2, . (8)

Thus,

llvw(, t) ll, 2 ~ t '"llvw(, I) Ii&2

so that l l
Vw(. , t) l l 2Ldies faster than l lVhs(, t) l lt 2.

Also, if

w(y, v, t) —t'sin(ntry) sin(qv ),

then y ——0.6 —lP(n, q)l, where P(n, q) is a polynomial
quartic in both n and q. The decay rate —

y increases
rapidly with the wave number of the perturbation.

The stability of the Starov solution justifies the selec-
tion of Tanner's laws for the macroscopic dynamics [22].
A droplet encounters many natural perturbations during
its spreading, ranging from impurities on the liquid-solid
interface to capillary wave excitations from the solid sur-
face [23]. Whether the excitations have a characteristic
wavelength of pm or A is inconsequential for the macro-
scopic dynamics, as both die ofI very quickly.

The stability argument breaks down for perturbations
which do not vanish at the edge of the Starov solution.
Perturbations of this type are dynamically significant in a
common macroscopic spreading phenomenon, the transi-
tion between the two macroscopic spreading regimes.
The equation governing the transition is

tion modified by microscopics near h. First, we show that
h~ is linearly stable to perturbations away from the con-
tact line. Let h(r, p, t) =hs(r, t)+w(r, p, t) solve (3) on
the macroscopic part of the drop. We assume that ~ is a
small perturbation with support contained inside the mac-
roscopic droplet for all time. The linearized evolution
equation for w is

w, +V [3whs2[v(V2hs)]]+V. [hs[v(v w)]] =0. (6)

ging into (9) gives that w, —(pg/p)V (hsvhs), or w
—V/l„~ where V is the volume of the drop and l,,~

=dy/pg is the capillary length. The gravitational term
tends to flatten out the drop, causing fluid to flow from
the center of the drop to the edges. Near the edge, the
perturbations compound. The size of the compounded
perturbation is approximately

' dto V V t

~cap ~cap
2 2 (10)

where r is a time scale associated with the compounding.
The time scale z is independent of the volume of the

droplet, and depends on both Jp /ypg and microscopic
parameters. The transition occurs when the size of the
compounded perturbation is comparable to h~ or when

y 3/St 6/5

(11)
l„pr y

This formula for the transition time is consistent with
experimental data on the transition by Cazabat and
Cohen-Stuart [11]. They find transition times ranging
from around 50 to 500 s with volumes ranging from 37.9
to 0.35 pl, suggesting that the transition time varies ap-
proximately like t =b/ JV. Moreover they discover that
the prefactor b changes for fluids with different micro-
scopic characteristics. This feature is consistent with the
fact that the transition is controlled by perturbations
compounding near the edge of the drop, where our stabil-
ity analysis breaks down.

Finally we mention the work of Brochard- Wyart,
Redon, and collaborators [24]. They study quasisteady
solutions of Eq. (9) and compare with drop profiles mea-
sured from experiment, with excellent agreement. Their
analysis shows that the drop profiles are not self-similar
during the transition, complicating the time dependence.
Equations (10) and (11) quantify the lack of self-
similarity by considering the eA'ects of perturbations pro-
duced by gravity explicitly.
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h, +V y h (V(V h)) = V. (h Vh) .
3p 3p

(9)

We consider an initial droplet in the Tanner s law regime.
The gravitational term can be viewed as a source term
which produces perturbations of the Starov solution.

The size of perturbation ~ produced by the source can
be estimated by decomposing h =h~+~, as above. Plug-
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