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Theory of Pattern Selection in Three-Dimensional Nonaxisymmetric Dendritic Growth
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We study the selection of the shape and growth velocity of three-dimensional dendritic crystals in cub-
ically anisotropic materials. In the framework of asymptotics beyond all orders we derive the inner
boundary-layer equation for the nonaxisymmetric shape correction to the Ivantsov paraboloid shape. The
solvability condition for this equation provides selection for both the velocity and the shape. The com-
parison with available numerical and experimental results is reasonably good.

PACS numbers: 68.45.—v, 44.30.+v, 81.30.Fb

The problem of velocity selection for two-dimensional
(2D) needle-crystal growth has been solved both numeri-
cally [1] and analytically [2-5]. Contradicting naive
physical intuition, it turns out that the steady solutions
exist only if the crystalline anisotropy of surface energy is
taken into account. The predictions of this steady-state
analysis agree with the numerical time-dependent simula-
tions [6] which take into account sidebranching behavior
of the tail of the dendrite. Details of this work may be
found in [7]. Most experiments, however, are three di-
mensional (3D) and it is important to extend the previous
theory to the three-dimensional case. A simple extrapola-
tion of the 2D case, in which the surface energy is aver-
aged in the azimuthal direction (axisymmetric approach
[8]), yields interesting qualitative predictions. But a
physical anisotropy, say, with an underlying cubic sym-
metry, will give rise to a nonaxisymmetric crystal shape,
in agreement with experimental observations [9]. Never-
theless, this makes the problem more difficult to solve
and, in fact, some doubts about the solvability mechanism
were expressed as an explanation for the dynamic behav-
ior of this system [10]. Therefore it seems to us of great
importance to bring some new material in the under-
standing of this theoretical problem which concerns a
prototype of growth process. Moreover, we want to stress
that this is the first theoretical treatment of a fully 3D
pattern. The treatment itself leads to an interesting puz-
zle. Roughly speaking, in the 2D case or in the axisym-
metric case, the velocity selection is given by the solvabil-
ity condition associated with the smoothness of the den-
drite tip. In the 3D nonaxisymmetric case, we must
therefore satisfy a solvability condition for each of the az-
imuthal harmonics. We know of only one attempt to
solve a nonaxisymmetric problem. This is the numerical
calculation of Kessler and Levine [11]. They made
several approximations and finally performed only a two-
mode calculation, but the crucial point of their analysis is
that they found enough degrees of freedom to satisfy the
solvability conditions.

The main aim of this paper is to develop an analytic
theory for 3D dendritic growth with an underlying cubic
anisotropy. The solvability theory beyond all orders re-
quires the search of singularities in the complex plane for

the nonaxisymmetric shape. In their vicinities, called
inner regions, one has to establish an inner boundary-
layer equation which is a nonlinear differential equation
containing derivatives with respect to a fast variable. Be-
cause we deal with a function of two variables, the
coefficients of the equation should depend also on the
smooth variable. The remarkable property of the equa-
tion is that all dependences on the smooth variable are
combined into a single common factor. The solvability
condition requires that this factor be a pure constant.
This will provide the selection of the velocity and the an-
isotropic shape corrections, which are in fact the addi-
tional degrees of freedom found in Refs. [11,12]. We
would also like to stress an additional problem. In the 2D
case, the selected crystal shape is close to the Ivantsov
parabola [7] since the anisotropy and surface tension
effects are assumed to be small. In the 3D case, the an-
isotropic shape correction becomes larger than the under-
lying Ivantsov solution as we move away from the den-
drite tip. We will discuss this point at the end of the pa-
per.

Let us study the problem of a free dendrite growing in

its undercooled melt. The control parameter is the di-
mensionless undercooling 5 = (T~ —T )cz/L, where TM
is the melting temperature, L the latent heat, and cz the
specific heat. The temperature field satisfies the diffusion
equation with the interface, moving with normal velocity
v„, acting as a source of magnitude v„L/cp. Together
with the Gibbs-Thomson condition at the interface, this
leads to a rather complicated integro-differential evolu-
tion equation [7]. It is possible to verify [13] that the
Ivantsov paraboloid of revolution g= —r /2p (p is the tip
radius of curvature), which moves with an arbitrary con-
stant velocity v, satisfies the steady-state equation when
the Gibbs-Thomson shift is set equal to zero. The Peclet
number p =vp/2D (D is the thermal diffusivity) is related
to the undercooling by the three-dimensional Ivantsov
formula 6 =pexp(p)Ei(p), where Ei(p) is the exponen-
tial integral function. Adding the Gibbs-Thomson effect,
one can expect to have velocity selection [7]. The usual
analytical approach to this problem is to linearize the in-
tegral term in the evolution equation around the Ivantsov
paraboloid, assuming the Gibbs-Thomson effect to be
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small. This gives [7,11]
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dpi(ri —r )[u(rl, yi) —u(r, y)]—~„[g]= I id) & — 2 2[r i + r —2rr 1 cos(p —
pl ) + (r —r 1 ) ] 3 2

Here u is the correction to the Ivantsov shape; all lengths are reduced by 2p; C=8pp/dp is an eigenvalue; dp= yTMc~/L is a capillary length proportional to the isotropic part of the surface energy y", and A„[g] is the well known
[7] Gibbs-Thomson shift from the equilibrium melting point:

$2y 1 $2ya„[(]= y+ y + y+R 1 Bei' R2 Be' (2)

where Ri, R2 are the local principal radii of curvature of the surface, Bi,82 are the angles between the normal n and the
local principal directions on the surface, and y(n) is the dimensionless anisotropic surface energy [8,11]

y(0, $) =I+4e[cos 0+sin 0(cos /+sin p)] =I+4@(cos 0+3/4sin 0+1/4sin 0cos4$) . (3)

Here 0 and p are the Euler angles of the normal vector to the interface. e measures the strength of the cubic anisotropy,
giving a maximum of surface energy in the (100) crystal direction. The axisymmetric approximation consists in drop-
ping the last term in Eq. (3). A convenient alternative expression for the Gibbs-Thomson shift is given by Eq. (10) of
Ref. [11]:

—h,„=yV
Vg +Q y V0. V( + Q y VP Vg 6 y (Vgxvg) g JI+

-Jl+(Vg)' t)0 41+(Vg)'!V(! r)0r)4 Jl+(Vg)'!Vg!
il'y (V0xVg) jJI+ V 2+ t)y V (V(/IVg!) eely j VgxV(I/!Vg!')

aya0 !vgl' 00 pl+(vg)' aqY Jl+(vg)'
(4)

where V is the two-dimensional gradient operator and
tan0=!Vg!.

Let us look for a solution of Eq. (1) of the form
(=gp+u(r, p), where

gp= —r ++A r cos(my) . (5)

This is possible at least formally, because none of the
terms r cos(mp) contributes to the integral in Eq. (1)
[11,12]. Kessler and Levine [11] proposed that these de-
grees of freedom are exactly those needed to satisfy the
solvability conditions for the smoothness of the dendrite
tip. They truncated the linear version of Eq. (1) to the
first nonaxisymmetric mode cos(4$) and solved this equa-
tion numerically. They found C to be close to the value
of the axisymmetric version and also found the coeScient
A4 to be small but not zero. Of course formula (5) can-
not describe the true needle-crystal solution. It is clear
that the linear approximation must break down eventual-
ly as we move away from the tip because the shift
r cos(mp) grows at a faster rate than the underlying
solution.

From the point of view of the general structure of the
analytic theory [2,7, 14], which has been developed only
for the 2D and 3D axisymmetric cases, we must look, first
of all, at the regular theory of perturbation for Eq. (1)
with respect to the small parameter 1/C. It is possible to
prove that, for each mode, the regular theory of perturba-
tion exists. Because the starting point of the perturbation
theory implies to drop u(r, p) in the Gibbs-Thomson shift
h„[g], then one has to deal with linear inhomogeneous in-
tegral equations. A necessary condition for the existence

! of a solution is that the inhomogeneous term must be or-
thogonal to the null eigenvector of the adjoint operator.
The crucial point here is that the solution of the adjoint
integral operator simply does not exist. According to the
general theorem of existence of the solution for the singu-
lar integral operator [15] we reach the conclusion that
the solution of the regular theory of perturbation exists
for each mode without any additional conditions and,
moreover, the solutions are smooth at the origin.

We turn now to the problem of the selection of the C
and A . As we mentioned before, the solvability condi-
tion appears only beyond all orders; in order to handle it
properly we have to derive the local equation near the
singularities in the complex plane. The location of the
singularities of this Gibbs-Thomson shift is given by the
condition

1+ (vg, ) ' =0.
This equation describes the singularities line in the com-
plex plane: r =r, (p). The function gp is given by Eq. (5)
and, for example, for the pure Ivantsov shape we have
r, =i/2. We will derive the inner equation of u(r, p) by
imposing a smoothness condition in gp. We do not as-
sume that this function is close to the pure Ivantsov solu-
tion. In the close vicinity of the line of the singularities
we can keep only the local singular contribution in the in-

tegral term and the most singular piece in the Gibbs-
Thomson shift which contains the factor [1+(Vg) ]
This greatly simplifies Eq. (1). Let us start with the
Gibbs- Thomson shift. The most singular contribution
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comes from the first and second terms in Eq. (4). Using
the definition tanO=lvgl, we find

and

+ ri'y vg v(lvgl)
Be' [I+ (vg) ']'"lvgl

+ ri y
I

7a[1+ (1/7) cos4$]
gg' [I + (vg) '] '

(7)

(8)

where a=15@ and e is the anisotropy coefficient in Eq.
(3) (assumed to be small). The function g contains two
pieces. The first one, gp, is smooth and the second one, u,
is assumed to be small, but varies rapidly with respect to
the fast variable: t =1+i lvgpl [we can choose, for exam-
ple, p as a smooth variable because r and p are connected
to each other by Eq. (6)]. More precisely, and this will
be checked self-consistently later, we assume that u-a,
the derivative u, —t —Ja and u« —l. In principle, the
ensuing calculations are quite straightforward; all we
need to do is to keep the main term with respect to the
small quantity a. Using the fact that Vu = u&Vt and
Vu& = u&, Vt, we find after some algebra

and

1+ (Vg) = 2t +2Vgp. Vu =2(t —qu, )

VP v(lvPl)lvgl '=q(1 —qu„), (io)

where

g

2JX "4
1+f„

12(r+f ) (r+f )'' '

where a=(7a/4)(1+ 7 cos4$). Using the definition of p
as a spherical angle made by the normal vector to the in-
terface, we find p=p+P, where

sinP =—
rlvgl r ay

' (i 3)

We note that the structure of the Gibbs-Thomson shift
[Eq. (12)] is very close to the one found in the 2D and
3D axisymmetric cases [2,7], except for the prefactor
which depends now on the smooth variable.

Let us discuss the behavior of the integral term in Eq.
(1) in the singular region. Because the function u is
singular, we need keep only the local contribution.
Therefore, we can write the integral term, which we call
J, in the form J = —CBu/2. In the nonaxisymmetric case
a careful analysis, which takes into account both the pole
term and the set of logarithmic singularities, gives

q =vgp v(lvgpl) lvgpl
-'.

Next, we perform a stretching transformation for both
the variable t =a r and the function u = —af/q, and

-]/2

combine everything into the final formula for the Gibbs-
Thomson shift:

1 2lP

I+4r2 (1+4r ) [I+[(1+4r )/r ](dr, /dP) j '

(i4)

which transforms into the usual [2,7] expression if the lo-
cation of the singularities r, is p independent. Finally the
local inner equation (which in fact is simply —A„=J)
can be written as

1+f"1— A, =O,
( +f )2 ( +f )3/2

(is)

where X is given by

X =J2Ca Bq (i 6)

gp= —r + —,', r cos(4$) . (i 7)

Here, A, is to be evaluated on the line of singularities
r =r, (p), and this depends on the smooth variable p only.
The crucial point is that Eq. (15) has precisely the same
structure as in the 2D case [2,7] and the dependence on
the smooth variable is entirely contained in the single fac-
tor k. Therefore, as in the 2D and 3D cases [2,7], Eq.
(15) is an eigenvalue equation: Transcendental small
corrections must disappear in its asymptotics when

So k must be a pure constant which belongs to a
discrete spectrum. The independence of A, with respect to
p represents the new 3D solvability condition which pro-
vides the selection of C and A . The consideration of the
leading order with respect to 8 in Eq. (16), simply de-
rived by linearization, can help the reader to make this
new solvability condition more explicit. First we note
that C obeys the usual 20 scaling relation: C=aa
Then, Eq. (16) does not contain any small parameters,
which means that a and 2 should be pure numbers.
The axisymmetric approach to this complicated nonlinear
equation simply consists in neglecting the dependence on

p in Eq (8). In this case we can set A~ equal to zero and
find the usual discrete spectrum of the eigenvalues a; only
the solution which corresponds to the smallest value of a
is a stable one [1,4]. Let us consider the axisymmetric
approach as an approximation of zero order with respect
to the "small" parameter 8=1/7 [see Eq. (8)]. Because
of this small parameter, we can expect that for the stable
solution, a should be only slightly diN'erent from its value
in the pure axisymmetric approach. It is clear that the
correction to a appears only at the second order with
respect to 6 (a change of sign of 6 means simply the
change of the origin of p). This might explain that the
numerics [11] give a selected value of C which is close to
the value found in the axisymmetric approach. In the
linear approximation we can satisfy the solvability condi-
tion by the correction A4r cos(4$) to the Ivantsov shape.
A simple but tedious calculation, which involves lineari-
zation of Eq. (16) with respect to 8' and A4, gives
84=76/11 =1/11. To leading order in a, the tip shape is
given by
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So, in the limit of small a, we predict that the shape
correction is independent of the anisotropy parameter a,
once written in units of p contrary to the tip radius p it-
self. We note that this universal shape correction for cu-
bic material is close to the only published experimental
determination in Ref. [9]. Concerning the numerics, this
number is about a factor of 2 smaller than the number
given in Ref. [11]. This di[I'erence can be explained by
the fact that several diA'erent approximations have been
made in both calculations. Unfortunately, in Ref. [11],
the calculation has been performed only for a single an-
isotropy value, so we cannot make a comparison at this
point. We hope that our result will suggest new experi-
ments and numerical simulations on the 3D dendrite
shape. In principle, we can go further in the expansion
(5) and see, for example, that A4 should be small at
least like 6 . But what is more important is the fact that
the number of degrees of freedom available are precisely
those we need to satisfy the solvability condition.

We discussed the growth in the direction (100), which
corresponds to the most common situation of a maximum
of the surface energy (3) with positive e. If it occurs that
e is negative, then the direction (100) corresponds to the
minimum and the direction (111) corresponds to the
maximum of the surface energy. In this case, the theory
predicts that the dendrite will grow in the direction
(111),if we assume this model for the surface energy.

As we mentioned before the linear approximation
breaks down eventually as we move away from the tip be-
cause the shift vector r cosmtlt grows at a faster rate than
the underlying Ivantsov solution. This means that our
approximation of linearizing the integral term is valid in

the tip region only. This is the crucial diAerence between
the 3D nonaxisymmetric case and the 2D case where the
selected needle-crystal shape is close to the Ivantsov para-
bola everywhere if the anisotropy is small. What does it
mean? We think that the complete treatment of the 3D
dendritic shape requires two diAerent steps. Our paper is
concerned with the first one: the selection mechanism by
a fully anisotropic surface tension and the determination
of the tip shape. Since the shape correction cannot be ex-
tended to all distances, a further analysis is required to
complete the description of the needle crystal. A correct
treatment requires a matching between the tip and the
tail via an intermediate range of r values where the non-
linear eA'ects cannot be neglected. From a purely theoret-
ical point of view, this analysis will diff'er completely from
the selection problem which is concerned with short dis-
tances near the tip and where an analytical extension in
the complex plane is useful. Once the shape correction is
established, one can always include time-dependent side-
branching nonaxisymmetric modes as in Ref. [16].

Perhaps these modes are important in the matching treat-
ment but we think as in Ref. [16] that they are irrelevant
to the selection process itself.
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