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Weak Universality in Two-Dimensional Transitions to Chaos
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Two rational numbers are associated to each periodic orbit of Smale s horseshoe, and practical algo-
rithms are given for their calculation. Using these quantities, it is possible to decide in many cases
whether or not a given orbit must always be created after some other given orbit in any two-dimensional
transition to chaos. A statement of "weak universality" for the bifurcation sequence as a whole is for-
mulated.

PACS numbers: 05.45.+b, 03.20.+i

One of the main endeavors of bifurcation theory is to
understand the way in which horseshoes [1] are created.
Several authors have studied sequences of bifurcations of
periodic orbits [2] in families of homeomorphisms of the
plane [3] leading to the formation of a horseshoe [4-10]:
They have considered both the necessary similarities and
the possible differences between these sequences and the
universal bifurcation sequence which occurs for families
of unimodal maps of the line (as described by the knead-
ing theory of Milnor and Thurston [11]).

Here we discuss some constraints on the bifurcation se-
quences of horseshoe-type orbits which are applicable to
arbitrary two-dimensional families: Because any C'+'
difIIeomorphism of a surface with positive topological en-
tropy has a horseshoe in some iterate [12],our results can
be seen as having implications for the mechanism of two-
dimensional transitions to chaos in a quite general con-
text. We address two questions, one of a local nature and
the other of a global nature. First, given two particular
orbits R and S of the horseshoe, is there one of them
which is always created before the other when a
horseshoe is formed'? Second, how strong are the con-
straints on the order in which orbits can be created in the
formation of a horseshoe? We shall present practical al-
gorithms for the calculation of two numbers associated to
each horseshoe orbit R, the height q(R) and the depth
r(R), which enable us to answer the first question in
many cases (for any horseshoe orbits R and S). (I) If
r(R) (q(S) then in any family lf„}„~[p ]] of homeomor-
phisms for which fu has trivial dynamics and f~ has a
horseshoe, R is created after S. (2) If q(R) & q(S) or
r(R) & r(S), then there exists a family [fJ in which R is
created before S. In particular, if q(R) & q(S) and
r(S) & r(R), then either R or S can be created first.

A precise statement is given later (Theorem 1). This
result can be applied to the second (global) question to
formulate a statement of weak universality for two-
dimensional transitions to chaos (Theorem 2), which is a
weak analog of the topological universality which exists
in the one-dimensional context. We shall also explain
how our methods enable us to obtain a lower bound on
the topological entropy of a partially formed horseshoe,

given information about one of its orbits.
Let us choose a model for the horseshoe f which takes

a square 8 in the plane, expands it uniformly in the hor-
izontal direction, contracts it uniformly in the vertical
direction, and then maps the left half of the deformed
square across 8 preserving orientation, and the right half
across 8 reversing orientation. We introduce symbolic
dynamics for f in the usual way [13]: Each point x in the
nonwandering set Q(f) has an associated itinerary,
which is the bi-infinite sequence c(x) =. . .c —~(x)co(x)
&&c(x). . ., where c;(x) =0 if f'(x) lies in the left half of
the square 8, and c;(x) =1 if f'(x) lies in the right half.
The horizontal ordering of points in i1 (f) is then
reflected by the unimodai order on semi-infinite symbol
sequences [13]: If s and t are two such sequences which
first differ on the nth symbol, we say that s & r if and only
if the first n symbols of s contain an odd number of 1's.
Then for any two points x and y in A(f), x lies to
the right of y in 8 if and only if cu(x)c~(x). . .
& co(y)c~(y). . . . If R is a period n orbit of the horse-
shoe, then its code cn is defined to be cp(x). . .c„—&(x),
where x is the point of R which lies furthest to the right
in 8 [thus, for example, the orbit R which contains the
point of itinerary (01111010) has code cg =10011110].
We shall write cpP for the semi-infinite sequence
c~cgcn. . ., and cg for the bi-infinite sequence
. . .cncnc~. . . (which is the itinerary of x).

An important observation is that two or more distinct
horseshoe orbits may be topologically indistinguishable.
For example, the period 7 orbits R and S with codes
cg =1001011 and cs =1001110are so: They can be dis-
tinguished by their codes in the full horseshoe f, but there
is no topological content to the statement that a particu-
lar orbit of a partially formed horseshoe "is" R rather
than S (it is possible to find a family jf,} of homeomor-
phisms of the plane, where fo and f ~ are full horseshoes
and each f, is horseshoelike, such that when the orbit R
of fc is followed through the family it ends up as the orbit
S of f~ [14]). In general, orbits P and Q of homeomor-
phisms g and h are topologically indistinguishable if there
is a family [g,} of homeomorphisms, with gn =g and
g~ =h, such that the orbit P can be followed continuously
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I, (c) = r r
2r +g,"-

~ tc; (2r —I ) +gt"-
~ tc;

for each r ~ 1, and let s be the least integer such that ei-
ther p, =1 or A,'-+~'I;(c) =H. Then &,'-~I;(c) =(x,y]
for some x and y: We define q (c) y if p, = 1 or
I,+i(c) & &,'-iI;(c); and q(c) =x if p, =2 and I,~~(c)

through the family to end up as the orbit Q. When this is
the case, we shall say that (P,g) and (Q, h) have the
same braid type [15] (the name is chosen because when a
homeomorphism arises as a return map for a Aow in three
dimensions, the braid type of a periodic orbit P is closely
related to the braid which is formed by P regarded as a
periodic orbit of the Aow [15]). In the above example,
(R,f) and (S,f) have the same braid type: If P is an or-
bit of a partially formed horseshoe g, then all we can
meaningfully say is that the braid type of (P,g) is the
same as that of both (R,f) and (S,f). With this in mind,
we say that a function defined on the set of all horseshoe
orbits is a braid type-invariant if it takes the same value
on any two orbits which have the same braid type: This is

necessary if the function is also to be well defined for or-
bits of partially formed horseshoes.

We shall begin by presenting the height and depth al-
gorithms, and giving statements of our main results. We
shall limit ourselves to an explanation of how the height
and depth arise; full details, including derivations of the
algorithms, can be found elsewhere [16] (the proofs de-
pend on the Nielsen-Thurston classification of isotopy
classes of surface homeomorphisms [17]). The main
principle underlying the results is that the existence of a
single orbit of a dynamical system can force the coex-
istence of many other orbits. In the field of discrete dy-
namics, the first example of this principle was provided
by Sarkovskii's theorem, which describes the possible sets
of periods which can occur for continuous maps of the
real line in terms of a "forcing order" on the positive in-

tegers [18]. This idea was later generalized to define oth-
er forcing orders for one- and two-dimensional systems.
However, an orbit in a system of three or more dimen-
sions does not give enough information to infer the ex-
istence of other orbits: For this reason, it seems unlikely
that there are comparable statements of universality for
transitions to chaos in higher dimensions.

Let us describe the algorithms for determining the
height and depth of a horseshoe orbit. These are rational
numbers lying between 0 and 2, the algorithms used for
calculating them are both expressed in terms of a primi-
tive process, which associates a number q(c) e (0, 1/2] to
each sequence c which begins c=10. . . and which con-
tains the group of symbols. . .010. . . , as follows: Write c
in the form c =10"'1"'0"'1"'.. . , where x'; ~ 0 and p; is
either 1 or 2 for each i, with p; =1 only if x;+& & 0 (thus
x; and p; are uniquely determined by c, and the fact that
c contains the group . . .010. . . means that p, =1 for
some s). Let

& n,', I, (c).
Definitions .—Let R be a horseshoe orbit. We define

cR to be cR if cR contains the group of symbols
. . .010. . . , and to be the code obtained by changing the
final symbol of cR from 1 to 0 otherwise. The height
q(R) of R is the number q(ctt ). The depth r(R) of R is
defined as follows: Consider all strings of the form
. . .01110.. . or. . .01010. . . in the sequence cR,. suppose
that there are l such strings g ~, . . . , gI contained in one
period of ctt . If l =0 then r(R) =

2 . Otherwise, for
each i ~ l let f; be the code obtained by starting at the
last 1 in g; and moving forwards through cR, and b;
be that obtained by starting at the first 1 and moving
backwards; let M; =max[q(f;), q(b;)]. Then r(R)
=mini; « IM

Our first main result makes precise the earlier informal
statement.

Theorem I.—Let R and S be orbits of the horseshoe
map f (1) I.f r(R) (q(S) then every homeomorphism
which has an orbit of braid type b(R,f) has at least as
many orbits of braid type b(S,f) as does the horseshoe.
(2) If q(R) & q(S) or r(R) & r(S), then there exists a
homeomorphism which has an orbit of braid type b(R,f)
but none of braid type b(S,f)

Examples. —Let R be the period 22 orbit with code
c~ =cR = 1000011000110000110010. Then ~~ =4, p~
=2, ~2=3, p2=2, ~3=4, @3=2, K'4=2, and p4=1. Thus

,'0 ]. Since 2, & &, we have I~ AI2flI3flI4=S, and
I4 & Ii AI2A I3. Therefore q(R) =max(I~ &120 I3)

There is a single string. . .01010. . ., with q(f~)
and q(b~) =q(100110000. . . ) = —,'. Thus

r(R) =
4 . Similarly, the orbit S with code cs= 10111101010has q(S) =

7 and r(S) = —,', and the or-
bit T with code cT =100001110000has q(T) =r(T) = —,

' .
The fact that r(R) & q(S) implies that in any family of
homeomorphisms leading to the creation of a horseshoe,
S must be created before R, and the fact that
q(R) (q(T) =r(T) & r(R) means that there exist fami-
lies in which R is created before T, and other families in
which T is created before R.

The height and the depth are both braid-type invari-
ants. In fact, there is a relationship between height and
a well-established braid-type invariant. Orbits of the
horseshoe have rotation numbers lying between 0 and
about the fixed point with code 1; for each orbit R, con-
sider the set of rotation numbers of all those orbits which
must be created before R in any transition to chaos: This
set is a (possibly degenerate) closed interval in the ration-
als, called the rotation interval pi(R) of R The .height
of a horseshoe orbit is equal to the lower end point of its
rotation interval. A proof of this is given in Ref. [16],
where a practical algorithm for determining pi(R) is de-
scribed. The other end point of the rotation interval is a
less interesting quantity: It is equal to 2 for "most"
horseshoe orbits. To be precise, the higher end point of
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pi(R) is & if and only if cR contains a string either of
the form. . .01010. . . or of the form. . .01 +'Q. . . for
some k ~ 1: Clearly the proportion of period n orbits
which have this property tends to 1 as n tends to infinity.

Now let us use Theorem 1 to make a more global state-
ment about the order in which orbits can be created.
Suppose that R is a horseshoe orbit with height q(R) =q.
Then by Theorem 1, any orbit S with r(S) & q has the
property that it must be created after R in any family of
homeomorphisms leading to the formation of a horseshoe.
However, the proportion of period n orbits with this prop-
erty tends to 1 as n tends to infinity, since if cs contains
the string of symbols . . .0 '1110 '. . . then r(S)( 1/k.

Theorem 2 (weak universality) Let.—R be a horse-
shoe orbit, and for each n ~ 1 let p„(R) be the proportion
of period n horseshoe orbits S such that any homeomor-
phism with an orbit of braid type b(S,f) has as many
orbits of braid type b(R,f) as does the horseshoe.
Then p„(R)~ 1 as n~ ~.

Constraints on the order of creation of orbits of low

period can be determined exactly using train track
methods [19]. However, these methods are impractical
for periods much greater than 10, whereas the algorithms
we have described are easy to implement for orbits of
period 10000 or more (notice that the time required to
determine the height and depth of a period n orbit R
given its code cR is linear in n) Figu. re 1 gives full con-
straints for the orbits of period 7 and less: an orbit R
must always be created after an orbit S (that is, R ) 2S)
if and only if there is a path from R to S in the diagram.
The nomenclature is as follows: Consider a list of period
n orbits, arranged with increasing codes in the unimodal
order. Two orbits ~hose codes diAer only in their last
symbol are always adjacent in this order, and are known
to have the same braid type: Since it is meaningless to
distinguish orbits of the same braid type in such a dia-
gram, such pairs of orbits are identified. Then the orbit
labeled nt, is the kth orbit in the list (thus 4i denotes the
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FIG. 1. Bifurcational precedences for low-period horseshoe
orbits.

orbit of code 1011, and 42 the pair of orbits with codes
1001 and 1000). Since the orbits 73 and 74 (for example)
also have the same braid type, they have been paired in
the diagram. The fixed point 1 i has been omitted: It is
always the first orbit to be created.

The height and depth arise from a consideration of
those features of the universal one-dimensional bifurca-
tion sequence which must always be reproduced in two
dimensions. The two situations can be compared because
the one-dimensional map obtained from the horseshoe by
collapsing along (vertical) stable leaves is unimodal:
Thus there is a symbolic dynamics for unimodal maps
corresponding to that for the horseshoe. To each orbit R
of the horseshoe, we associate the orbit of the unimodal
map which has the same code, which we also denote R.
Given a pair R,S of horseshoe orbits, we write R ~ 2S if
R is always created after S in any family of homeomor-
phisms of the plane, and we write R~ ~S if the one-
dimensional orbit R is always created after the one-
dimensional orbit S in any family of maps of the line.
The fact that there is a universal order in which the orbits
are created in the one-dimensional context is equivalent
to saying that for every such pair, either R~ ~S or
S~ iR. This is not true in two dimensions: For instance,
the two orbits R and T given in the examples after
Theorem 1 have R Q2T and rg2R.

Given R and S, it is easy to determine whether or not
R ) iS using kneading theory (in fact, if R and S are dis-
tinct then R) iS if and only if cpP) cs [201); the prob-
lem of determining whether or not R ~ 2S is much hard-
er. This leads us to consider the set of orbits R for which
R~ ~S implies that R~ 2S. Such orbits will be called
quasi one dime-nsion-al (qod): They are relatively rare,
since the constraints on the one-dimensional bifurcation
sequence are stronger than those on the two-dimensional
bifurcation sequence. The fact which enables us to define
the height and depth is that for each rational q with
0 & q & 2, there is a corresponding qod orbit Pq, and
that these orbits have the property that P~ ~ 2P~ if and
only if q ~q'. Thus in any family of homeomorphisms
leading to the creation of a horseshoe, the orbits Pq ap-
pear in order of descending q. The height q(R) and the
depth r(R) of an orbit R are the limiting values of q
which tell us, respectively, the latest and earliest that R
can be created relative to the orbits Pq [thus Pq ) 2R for
q & q(R), while Pq P2R for q & q(R); and R) 2Pq for
q &r(R), while R+qPq for q &r(R)l. It is easy to see
how Theorem 1 follows from these descriptions. For ex-
ample, if r(R) &q(S), let q be a rational number with
r(R) & q & q(S): Then R ~ 2Pq and Pq ) 2S, so that
R~ 2S.

The orbits Pq are described as follows: If q =m/n in
lowest terms, then Pq has period n+2, and its code is

cq =10 ' q 120 '
1 . . . 1 0 10, where x'!(q) = [1/qJ—1 and x;(q) = [i/qJ —[(i—1)/qJ —2 for 2~i (m

(here [xJ denotes the greatest integer which does not
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FIG. 2. Entropy of the quasi-one-dimensional orbits Pq.

exceed x). Thus, for example, we have cl/3 10010,
c |I4= 100010, c lls = 1000010, and c2ls = 1011010. (In
fact, there is a mathematical characterization of the fam-
ily of orbits [Pq]: They are exactly the qod orbits which
have pseudo Anosov braid type [15].) The reader famil-
iar with the work of Holmes and Williams on knot types
of orbits in the suspension of the horseshoe [8] will notice
that the first n symbols of the code of the period n +2 or-
bit P l„give the code of an orbit which defines an (m, n)
resonant torus knot. The author has no explanation for
this observation.

We finish by indicating how to obtain lower bounds for
the topological entropy of a partially formed horseshoe.
Given a horseshoe orbit R, let h(R) denote the smallest
possible entropy of a homeomorphism having an orbit of
the same braid type as R. Now we know that for all

q & r (R) we have R ) 2Pq, and hence h (R)) h (Pq).
However, since Pq is a qod orbit, it can be shown that
h(Pq) is equal to the entropy of Pq regarded as an orbit
in one dimension: This can rapidly be calculated using
standard transition matrix techniques. A graph of the
function qj h(Pq) is given in Fig. 2: It is discontinuous
everywhere. Thus if g is a partially formed horseshoe
which has an orbit with the braid type of R, then
h(g) ) h(Pq) for all q & r(R). For example, the orbit R
with code cR 10011010 has r(R) = —, : Thus any par-
tially formed horseshoe which includes an orbit of the
braid type of R has entropy greater than h(P2ls) =0.442.
Better bounds can be obtained by picking rationals closer
to 3 . For example, h(P5ii4) =0.481. Notice that be-
cause the value of r(R) depends only on local properties
of the code of R, this method provides bounds on the en-
tropy which depend only on small segments of the code of
an orbit: For example, if g has an orbit S whose code
contains the string . . .0011100.. ., then r(S) ( 3, and
hence h(g) & 0.481.
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