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Spin-Lattice Relaxation: Non-Bloembergen-Purcell-Pound Behavior by Structural Disorder
and Coulomb Interactions
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We study, by Monte Carlo simulation, the spin lattice relaxation rate 1/T(w,T) caused by diffusing
ions in disordered structures. We show that both disorder and Coulomb interactions are essential to ob-
tain the typical non-Bloembergen-Purcell-Pound behavior of 1/7";. The dependence of 1/T: upon fre-
quency o and temperature T can be described by the simple scaling form 1/T)=w0 ~'f(wt). We find
that the NMR correlation time t is more highly activated than the conductivity relaxation time 7,
which is in agreement with very recent experimental results.

PACS numbers: 66.30.Dn, 76.60.Es, 77.40.+i

Nuclear magnetic resonance (NMR) [1] is one of the
most common experimental techniques to probe ionic
motion in disordered media, such as glass forming melts,
electrolyte glasses, and crystalline ionic conductors with
local disorder [2-7]. The behavior of the diffusion in-
duced spin lattice relaxation rate 1/7(w,T), as a func-
tion of temperature 7 and Larmor frequency w, can be
summarized as [2-7]
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with an exponent n>0. In an Arrhenius plot, 1/7T
shows a maximum at 1/Tmax(w), where Tpax(w) de-
creases with decreasing frequency. Since generally E
> E,, the curve is asymmetric in shape. For fixed tem-
perature 7, 1/T(w,T) is constant at low frequencies
<1/t and decreases as 0"~ 2 for > 1/r. The NMR
crossover time t is considerably larger than the inverse
hopping rate v~ ' of the mobile ions [8]. In contrast to
this overall behavior, the standard Bloembergen-Purcell-
Pound (BPP) theory predicts a symmetric maximum of
1/T, in the Arrhenius plot with =0 and a NMR cross-
over time 7 of the order of v ™! [9].

A similar frequency dependence with a fractional ex-
ponent n,> 0 and a crossover frequency 7, ! is observed
in the frequency dependent conductivity o(w,T) below
the GHz regime [10]. For fixed temperature, o(w) is
constant at low frequencies w <1/7, and increases as
o(w) ~(iw)"™ for @>1/1,. Again, except at high tem-
peratures, 7 is considerably larger than v ™! and the ac-
tivation energy Ef in the dc regime is larger than the ap-
parent activation energy E§ in the dispersive regime [11].
As the temperature is lowered, 1/7, decreases and the ex-
ponent n, seems to increase [12]. In contrast, standard
random walk theory predicts no dispersion to occur;
ns=0. Similar anomalies have been observed in quasi-
elastic light or neutron-scattering [13,14] and ultrasonic
attenuation [15].

It has been suggested by several authors [10,16-18]

that the Coulomb interaction between the mobile ions,
which is not taken explicitly into account in the standard
theories, is responsible for the anomalous transport be-
havior. Mean-field [17] and mode-coupling [18] ap-
proaches as well as Monte Carlo simulations [19] of
tracer diffusion and ionic conductivity in disordered
structures have substantiated this idea.

In this Letter we investigate, for the first time, how the
spin lattice relaxation rate and the related NMR correla-
tion functions are affected by structural disorder and
Coulomb interaction between the mobile ions. We show
by Monte Carlo simulations that it is the interplay of
both Coulomb interaction and structural disorder that
gives rise to the typical non-BPP behavior of 1/7(w,T)
with an exponent n being independent of temperature.
We find that 1/7, obeys simple scaling behavior. In con-
trast, the exponent n, increases with decreasing tempera-
ture and the conductivity o(w,T) obeys no simple scaling
form. At lower temperatures, n, approaches n, and in
this case 1/7, and o may be simply connected, as sug-
gested by mean-field theory [17] and some experiments
[3]. The conductivity relaxation time 7, is less activated
than the NMR correlation time 7, in agreement with
very recent experimental results [20,21].

According to the standard theory [1], the spin-lattice
relaxation rate 1/7 is determined by the spectral densi-
ties J V(@) and J @ (w),

- =CU V@ +I P, @)
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which are the Fourier transforms of the correlation func-
tions G@(1), J9(w) =GP W)e®dt, g=1,2; w is
the Larmor frequency, and C is a constant depending
only on the nuclear properties of the mobile ions. For

magnetic dipole-dipole or quadrupolar interactions,
G 9 (¢) can be written as [1]
N
GO =L 3 (FP* (OFL ) . (3)
N i=j

The brackets () stand for the thermal average, N de-
notes the number of particles, and FS?(t) =q(8x/
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15)'/2Y‘§(Q,~j(t))/r,~3'(t) describes the local field between
the particles i and j. Y% are the spherical harmonics, and
Q;; and r;; are the spherical coordinates of the vector r;;
pointing from the ith to the jth particle, with respect to
the magnetic field. The ansatz G @ (1) =G @ (0)e ~/*
leads to the standard BPP behavior.

We consider mobile particles with density p in both an
ordered and a disordered simple cubic lattice of spacing a
with periodic boundary conditions. The magnetic field is
aligned along the [100] direction. To model the structur-
al disorder we assume that a certain fraction 1 — p of sites
is inaccessible for the mobile particles, and take the
diffusion path that percolates through the lattice as disor-
dered substrate [22]. The particles can hop between ac-
cessible neighboring sites, the structural potential barrier
between the sites is V. In the absence of Coulomb
interactions the hopping rate is simply 7o '=7e'
xexp(—V/kgT), where 7% is an attempt frequency. In
the presence of Coulomb interactions, the modified poten-
tial barriers are calculated by using Ewald summations,
and the hopping rates are chosen according to the stan-
dard Metropolis algorithm. For details of the simulation
technique, we refer to [19]. The relative strength of the
Coulomb interaction with respect to the thermal energy
kgT is characterized by the plasma parameter ['=e?/
rekgT, where % zr} =p ~! and the relative strength with
respect to the structural potential barrier V is n=e?/r,V.

In our numerical simulations we have chosen a lattice
of length L =39a, and p=10"2%/a3, n=5, and p=0.4,
which is well above the percolation threshold p.=0.312
[22]. Averages were performed over typically 100 con-
figurations.

First we discuss our results for the correlation func-
tions. For sufficiently large I' (I' > 10) we found numeri-
callY that G@()=4GV(¢) for all times ¢, and thus
GP1)/G?0)=6V)/GV(0). Figure 1(a) shows
1—G9(1)/G @(0) versus t/7¢ for T =40, 60, and 80 (i)
in the ordered lattice and (ii) in the disordered system.
The typical decay time 7 of the correlations is defined by
G9(1)/G@(0)=1/e. As is shown in the inset of Fig.
1(a), the ratio 7/79 is thermally activated, 7/7¢
=exp(E./kgT), with an activation energy E.==0.04e?/
rs=0.04nV in the regular lattice, and E,==0.09e¢ 2/r,
=0.097V in the disordered system. In both systems,
1—G9(1)/G @(0) is proportional to /7o for small /7o
values. In the disordered system, for I' > 20, an inter-
mediate time regime can be well identified, where
1-G9)/G90)~(t/t9)' ™" The exponent n is in-
dependent of temperature, n=20.73. Closer inspection
[Fig. 1(b)] shows that G @ (¢)/G 9(0) is only a function
of t/7, and thus 1 —G 9 (t)/G P (0) ~(¢t/7) ' " for 70/7
<t/t <1. Hence, the correlation functions show Kohl-
rausch-Williams-Watts form [23], G @ (1) =G “(0)
xexpl—(¢/7)!7"], in the relevant decay regime.

From Eq. (2) we obtain 1/T(w,T) by Fourier trans-
formation. Figure 2 shows 1/7T(w,T) as a function of
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FIG. 1. Plot of 1=G®()/G®(0) in the ordered lattice
(open symbols) and in the disordered system (filled symbols)
(a) as a function of t/7o for I'=40 (0,@), 60 (Om), and 80
(a,A), and (b) as a function of the scaling variable t/7 for
=40 (0,8), 50 (0, ¢), 60 (Om), 70 (x,%), 80 (A,A). The
inset in (a) shows the ratio 7/7¢ as a function of the plasma pa-
rameter I'.

V/kgT for (a) the ordered lattice, and (b) the disordered
system. In both cases, 1/T is independent of w at the
high temperature side of the maximum. In case (b),
when both disorder and Coulomb interactions are present,
we obtain the typical non-BPP behavior: The curves are
asymmetric in shape, the maximum occurs at ot
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FIG. 2. The spin-lattice relaxation rate 1/7"; in units of Cte
as a function of V/kgT (a) in the ordered lattice and (b) in the
disordered system. Different symbols refer to different Larmor
frequencies: In (a) wtT==3%10"° (@), 9.5x10~° (W), and
31078 (A); in (b) wr==3%10"7 (@), 9.5x10~7 (W), and
31076 (a).
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FIG. 3. Scaling plots of (a) w/T) versus log(wt) and (b)
o(w)/a(0) versus log(wr,) for the disordered system. In (a)
the symbols refer to the same frequencies as in Fig. 2(b), in (b)
the symbols refer to different temperatures V/kgT =10 (O), 20
(@), 30 (O), 40 (m), 50 (A), 60 (a), and 70 (O).

== 1> w7o with 7 from Fig. 1(b), and 1/T; decreases as
1/Ti~7t(wt) ~2*" at low temperatures (w7 >>1), with
the same exponent # as in Fig. 1(b). The activation ener-
gies are Ey=1.5 V and E,=0.4 V. It is important to
note that in the absence of disorder, Fig. 2(a), the devia-
tions from the standard behavior are much less pro-
nounced, and an anomalous frequency dependence is
hardly seen. The same is true in the disordered system,
when the Coulomb interaction is absent [24]. This shows
that the presence of both structural disorder and
Coulomb interactions is needed to obtain the experimen-
tally observed non-BPP behavior. In the following we
concentrate on this relevant case only.

As a consequence of the scaling behavior of G9P@),
1/T1(w,T) is described by the simple scaling ansatz [see
Fig. 3(a)l

Lo, =L 100, )
T] [0

where f(x)xx for x<1 and f(x)xx""! for x>1.
Equation (4) implies E;=E,+V and the relation E,
=(1 —n)E, first proposed by Ngai [16].

The scaling ansatz (4) as well as the corresponding
scaling ansatz for o(w), 6(w,T) =1, 'g(wz,) has been
suggested by several authors [16,25]. To see if this scal-
ing relation also holds for o(w,T), we have calculated,
for exactly the same systems as above, the conductivity
o(w,T) (for details of the simulation see [19]). We
determined 7, from the crossover between the dc plateau
and the dispersive region, and n, from the slope of logo
versus logw in the dispersive region. The result for
o(w,T)/c(0,T) is shown in Fig. 3(b), as a function of
wt, The absence of a data collapse shows that, in con-
trast to 1/7T(w, T), there is no simple scaling behavior of
o(w,T). The reason for this is that the exponent n, in-
creases with decreasing temperature [see Fig. 4(a)l, and
therefore the temperature dependence of o cannot be de-
scribed alone by changing the frequency scale (which is
indeed possible for 1/7T since n is temperature indepen-
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FIG. 4. Plot of (a) the exponents n and n, and (b) the relax-
ation times t/7¢ and 7,/7¢ as a function of V/kgT in the disor-
dered system.

dent). At lower temperatures, however, n, seems to ap-
proach n, and we expect mean-field approaches [3,17]
yielding n=n, to be applicable. Figure 4(b) shows the
normalized time scales 7/7o and t,/to as a function of
V/kgT. It is important to note that the conductivity re-
laxation time 7, is less activated than the NMR relaxa-
tion time 7, and therefore t/7,>>1 at lower tempera-
tures. This is in accordance with very recent experimen-
tal results for (LiCl)g6(Li20)0.7(B203) 0 [20] and glassy
Li;AlSi;O¢ [21].

The different temperature dependence of the exponents
n and n, and of the relaxation times 7 and 7, show ex-
plicitly that in general a universal description of spin-
lattice relaxation and conductivity cannot be made. The
reason for this is that although the phenomena observed
in both experiments originate from the same ion transport
mechanism, they are governed by different correlation
functions. In spin lattice relaxation, the correlation func-
tions are determined by diffusion of ion pairs, while in
conductivity the current-current correlation function is
mainly determined by the diffusion of single ions. The
deviations from the standard behavior arise from
forward-backward correlations of the mobile ions, which
occur at length scales between 1 and 3 jump distances
[17,19]. Since short distances are weighted considerably
more heavily in NMR than in conductivity, the effect
of these forward-backward correlations becomes much
stronger in NMR than in conductivity. Hence we expect
larger deviations from the standard behavior in NMR
measurements, with a larger exponent » and a larger ac-
tivation energy F., in agreement with our findings.

When submitting this paper we learned from K. L.
Ngai that a generalized version of the coupling scheme
[26] is in agreement with our results.

Our interest in this field was stimulated by many dis-
cussions with W. Dieterich, K. Funke, P. Heitjans, O.
Kanert, and K. L. Ngai. We thank the Deutsche
Forschungsgemeinschaft for financial support.
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