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Driven DiII'usion, Kawasaki Dynamics, Mixing, and Spatial Ordering in an Interacting Lattice Gas

Yan He and Ras B. Pandey
The Program in Scientific Computing, Department of Physics and Astronomy,

University of Southern Mississippi, Hattiesburg, Mississippi 39406 504-6
(Received 18 January 1993)

Kawasaki dynamics is used to study the transport properties of a nonequilibrium steady state system
of interacting lattice gas of oppositely charged particles in a linear gradient field in two dimensions. The
rms displacements show unusual nondiffusive transport. The effective conductivity varies with the tem-
perature which deviates from the Arrhenius law and depends on the range of interaction. Density of a
fully mixed state decays with temperature with a power law. Onset of spatial ordering occurs in a cer-
tain temperature range at a fixed range of interaction.

PACS numbers: 64.60.Ht, 05.40.+j, 05.70.Ln, 68.35.FX

Transport of particles (charged or neutral atoms and
molecules) at the surfaces plays a very important role in

understanding the kinetics of adsorption and desorption
and the evolution of spatial ordering in chemisorbed or
physisorbed surfaces in the vapor deposition and coating
processes. Several experiments have been carried out in

recent years to elucidate how diA'usion of the adsorbates
affects the ordering, i.e., CO diffusion, on Pt(111) [1],
hydrogen and deuterium on tungsten [2], and nickle [3]
surfaces. Numerous theoretical investigations have been
carried out on understanding the ordering via simple
model systems such as lattice gas and Ising models with
nearest neighbor and next nearest neighbor interactions
[4,5]. Relatively few attempts have been made to study
both the transport and the ordering simultaneously in

particular to understand how the spatial ordering settles
as the particles diffuse on the surface [6,7]. Even with
the nearest neighbor (nn) interaction the simple lattice
gas models [6-8] show a variety of unusual transport
properties such as subdiffusive transport, metastability
associated with the onset of domain growth, and reen-
trant global transport behavior as a function of coverage
and temperature. The phase transitions associated with
the spatial ordering in most of these model systems are
well studied [4,5]. It would be interesting to investigate
the effect of an external biased field on both transport
properties and spatial ordering for the following reasons:
(1) It is easier to investigate the global transport proper-
ties such as conductivity in the presence of field. (2)
Since a system is driven out of equilibrium due to biased
field, it would be interesting to see if a stable special spa-
tial ordering sets in the nonequilibrium steady state. In
this Letter we attempt to address these issues for an in-
teracting lattice gas system.

Several attempts have been recently made to under-
stand the transport and spatial ordering in nonequilibri-
um steady state systems [9-13]. Most of these studies
are limited to nearest neighbor lattice gas and many of
these studies [9,10] focus primarily on phase transitions
in the presence of a global biased field constant at all lat-
tice sites. In this Letter, we consider an interacting lat-
tice gas model of a binary mixture of oppositely charged

particles with conserved number and charge where a
Coulomb-like interaction is extended up to fourth neigh-
bors. Furthermore, instead of considering the same field
at all sites [9,10], we use a linear gradient field which
usually develops due to the distribution of mobile ions in

Iluid mixtures [13]. We find several new results: unusual
nondifusive transport behavior, non-Arrhenius depen-
dence of conductivity on temperature, onset of spatial or-
dering, domain formation, and a mixing-demixing phase
transition [5,6].

We consider a square lattice. Half of the lattice sites
are randomly occupied by particles. Each particle is as-
signed a unit charge density while each empty site a neg-
ative unit charge density such that the total charge of the
whole lattice is zero. A linear gradient field is set up
across the lattice. The interaction energy is given by

H =g p; p, /r;, +g Bp( 1
—i„/L„)p;, (1)

V &x

where p; is the charge density of an empty site or particle
at site i, r;J. is the distance between i and j sites, i is the
x coordinate of site i, L„ is the linear length along the x
axis, and Bn is the field strength which is chosen as unity.
We are restricted here to a highly truncated range of in-
teraction, i.e., up to fourth neighbor (4n); however, this is

larger than the range considered in previous studies
[8-10]. We use the Metropolis algorithm [14] to move a
particle to its neighboring empty site and a periodic
boundary condition is imposed across the boundaries.
For the nearest neighbor interaction, in the absence of
field (B0=0), our model is reduced to a nn antiferromag-
netic Ising model [15] where an "up" spin corresponds to
a particle while a "down" spin to an empty site. The
mechanism of particles' hopping corresponding to a
nearest neighbor spin exchange thus represents the
Kawasaki dynamics [16].

Figure l shows a typical variation of energy with time
at temperatures T =0.70 and 1.00 (in units of the
Boltzmann constant ktt) for a various range of interac-
tions. The energy decays continuously with time at all
ranges of interaction and temperatures, except at
T=0.70 with the nearest neighbor interaction for which
the energy saturates. We shall concentrate here primari-

565



VOLUME 7 1, NUMBER 4 PHYSICAL REVIEW LETTERS 26 JULY 1993

0.00

—6.00

~ —12.00

LIJ

—18.00—

&IIII, I II g
0 0 0

4~~~ ~ 0ill 0 0

o

OOOOOOO
0~ a00~ 0

a ~ 0~ ~

4~
4

4~
~NNBI1= I,T=Q. TO
0 0 NNBR=2, T=0.70
annal NNBR=4, T=0.70
~oooo NNBR=1, T=1.00
~aaaa NNBR=2, T=-1.00
aaa+a NNBR=4, T=1.00

OCXXM NNBR= 1,T=0.70
00000 NNBR=2, T=0.70
aeAa& NNBR=4, T=0.70
~oooo NNBR=1, T=1.00
~aaaa NNBR=2, T=1.00
mamas NNBR=4, T=1.00

~gQa~Ra
00k ~ 0

~ 00
0

~~ooo
~ ~

~ ~
o

-24.00 I I I I I I I I I I I I I I I I
i I I I I I I I I I I I I I I I I I I I

i
I I I I I I I I I I I I I I

0 0 0 00000000-0
O0

0.00 40000.00 80000.00
Time

1 20000.00

FIG. l. Energy versus time for the nearest neighbor (0),
next nearest neighbor (a), and fourth neighbor (a) interac-
tions. Filled symbols are at the temperature T=0.70 awhile the
unfilled symbols are at T=1.00; sample size 60x60 with time
steps up to 105 Monte Carlo steps (MCS) were used.
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ly on nonequilibrium configurations for which the energy
does not approach its equilibrium value as the system is
constantly driven out of equilibrium.

Plots for the variation of the x and y components of the
rms displacement of each particle (tracer) with time on a
log-log scale are presented in Fig. 2. A linear fit of the
data points especially in the long time regime suggests a
power-1aw behavior of the tracer's diffusion, i.e., Rt,-t .
Since the gradient field is in the x direction, one would
expect a driftlike asymptotic behavior of the x component
of the rms displacement of each particle. However, we do
not observe a driftlike behavior. The effective exponent k
for the variation of the x component of the rms displace-
ment with time seems to depend on the range of interac-
tion and possibly on the temperature. For example, at
T=0.70, k =0.68+ 0.2 [next nearest neighbor (nnn)]
and 0.55+ 0.02 (4n), and at T=1.oo, k =0.53+ 0.02
(nn), 0.72+ 0.02 (nnn), and 0.72~0.02 (4n). The y
component of Rt„on the other hand, shows a diffu-
sionlike behavior with the effective exponent k around —,

(within the range of 0.47 to 0.52). The simulation is per-
formed with different sample sizes in order to see the
effects of the finite lattice. Figure 3 shows a typical vari-
ation of the rms displacements of each particle with two
different samples and, as we see, the results remain quali-
tatively the same. We have also studied in detail the tem-
poral variation of the center of mass of the particles
which is defined as R, m =g;r;/Nz, where r; is the posi-
tion of the ith particle, and the summation extends over
all Nz particles. The x and y components of the rms dis-
placement R, m of the center of mass of the particles
shows an expected collective transport behavior: The x
component of R, m shows a drift, while the y component
fluctuates around its center of mass which shows a very
slow drift. A power-law dependence of the center of mass
on time for the collective motion of particles is also dis-
cussed by van Beijeren [17] but in a different context.

%'e have visually studied the spatial distribution of par-
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ticles in order to investigate ordering, domain formation,
and spinodal decomposition [5]. We have analyzed in de-
tail the growth and decay of clusters [18] formed by par-
ticles, holes, and perfectly mixed configurations in which
a particle is completely surrounded by neighboring holes
and vice versa. With the nearest neighbor and fourth
neighbor interactions, we observe the growth of domains
of a nearest neighbor antiferromagnetic (AFM) ordering
in which a particle is completely surrounded by neighbor-
ing holes and vice versa. Note that the size of domains
represents the degree of mixing here. In steady state at
high temperatures, we see isolated clusters which grow in

size as we reduce the temperature. Thus, as a function of
temperature we observe a percolationlike transition [18]
from isolated AFM clusters to an infinite AFM cluster.
The onset of incipient spanning AFM clusters occurs at a
critical temperature [T,~=I.ls (nn), T,~=0.72 (4n).]
Spectacular domain growth appears with the next nearest
neighbor interaction as we vary the temperature (see Fig.
4). We observe a transition from a disorder phase at
T=1.oo to an ordered (strip) phase at T=0.30 and
then to a domain of strips at low temperatures (T
=o.so-o.os).

The concentration of particles in the perfectly mixed
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FIG. 2. Variation of the x and y components, in (a) and (b),
respectively, of the rms displacement of each particle on a log-
log scale. Same statistics as in Fig. l.
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FIG. 3. A typical variation of the rms displacements of each
particle with two difl'erent samples [x component (a) and y
component (b)].

In the steady state the flux Q of particles going into the

microstate varies with the temperature. A typical plot of
the concentration of fully mixed particles pI versus tem-
perature is presented in Fig. 5. From the continuous de-
cay of p/, we identify a critical temperature (T,—0.80)
where pI 0. A pI versus T—T, plot on a log-log scale
gives an excellent linear fit,

(2)

with the exponent P about —,'. It is tempting to charac-
terize pI as a staggered magnetization although it does
not saturate at T & T, . Furthermore, this system is not
in thermal equilibrium in contrast to second order phase
transitions in ordinary AFM [15] where P is a well
defined exponent for the order parameter. However, the

system does not mix above T, on the global scale, and the
perfect mixing does not appear at very low temperatures
but near T„where pI becomes maximum (see Fig. 5).

For our driven system, it is rather straightforward to
estimate the eA'ective conductivity [13] in its steady state.
From the flux Q of the particles along the field direction,
one can evaluate the current density j,

(3)

FIG. 4. Snapshot of the configurations for the next nearest
neighbor interaction in steady state (at 105 MCS) at tempera-
tures T =10.00 (a), 1.00 (b), 0.50 (c), 0.30 (d), 0.10 (e), and
0.05 (f); sample size 60&60 was used. A particle is shown by
(Q) and a hole by () except in a perfectly mixed microstate in

which either a particle surrounded by all neighboring holes or a
hole surrounded by all neighboring particles is shown by (a).

system at one end (i.e., toward the high field) is equal to
the Aux of particles leaving the system at the opposite end
(zero field) along the x direction. Excellent linear plots
of our g versus r data show that the steady state is
achieved in rather short time in this model. Using

j=oEg, we can estimate the eAective conductivity cr at a
fixed temperature; Es is the gradient field which varies as
1/x along the x direction [see Eq. (1)]. Ordinarily, the
conductivity o shows an Arrhenius dependence on the
temperature, i.e.,

cr =2 exp( E /T), —

where 2 is a constant and E, is the activation energy.
Therefore, a plot of log(o) versus I/T should be linear.
Figure 6 sho~s such a plot for the nn, nnn, and 4n in-
teractions. In a very limited temperature regime, a linear
decay seems to emerge for the nn and 4n interactions.
Such a linear regime is hard to identify with the nnn in-

teraction, which suggests a deviation from the Arrhenius
dependence.

In summary, we have presented a simple nonequilibri-
um steady state model of an interacting lattice gas of a
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same statistics as in Fig. 1.

FIG. 5. (a) Fraction of particles pf in a fully mixed state
versus temperature (T) for the fourth neighbor interaction in

steady state. (b) pf versus T, —T on a log-log scale in the criti-
cal regime near T,. Same statistics as in Fig. 1.

binary mixture in a linear gradient Geld with Kawasaki
dynamics. The range of interaction plays an important
role in the spatial ordering: As a function of tempera-
ture, a mixing-demixing transition occurs with the nn and
4n interactions, while special spatial ordering and growth
and decay of striplike domains appear with the nnn.
Along the field direction, we find that the collective
motion of the particles (i.e., their center of mass) is faster
(driftlike) than each particle (superdiffusive). The con-
ductivity depends on the temperature and the range of in-
teraction, and evidence for its deviation from the Ar-
rhenius dependence is found. Detailed study on the or-
dering and transport will be published elsewhere.
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