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Quantum Signatures of Classical Chaos: Sensitivity of Wave Functions to Perturbations

L. Benet
Institut fur Physik, Universitat Basel, Basel, Switzerland

T. H. Seligman and H. A. Weidenmuller~
Wissenschaftskolleg zu Berlin, Berlin, Germany

(Received 25 January 1993&

We compare the influence of perturbations of classically regular respectively chaotic Hamiltonians on
their eigenfunctions. A generic measure of the perturbation strength is given by the average spreading
width, which semiclassically is a phase-space integral. Thus, contrary to common assumption, the
spreading width cannot be an indicator of regularity or chaos. The distribution of expansion coe%cients
of perturbed eigenfunctions in terms of unperturbed ones is markedly diflerent for the two cases and
may serve as a quantum signature of chaos referring to states rather than to spectra.

PACS numbers: 05.45.+b, 03.65.Sq

What are generic quantum signatures of classical
chaos? It was recognized about ten years ago [1,2] that
the distribution of eigenvalues is a suitable candidate, and
it is now established [3] that this distribution generically
has GOE-like Auctuations for classically (fully) chaotic
systems, and Poisson-like fluctuations for classically in-

tegrable systems. (Here GOE stands for the Gaussian
orthogonal ensemble of random matrices [4].)

In the case of eigenfunctions, despite early eAorts (e.g. ,

[5-8]), a similarly well-defined signature is not yet
known. Many properties of wave functions have been dis-
cussed but they are usually diScult to express in a basis-
independent form (e.g. , [8-10]), in spite of some general
arguments for the ergodicity of wave functions [11].

Zaslavsky [12] conjectured that eigenfunctions of clas-
sically chaotic systems may be more sensitive to changes
BH of the Hamiltonian than those of classically integr-
able ones. Inspection shows that this conjecture must be
modified, but serves nonetheless as a useful point of
departure. This is because such a sensitivity is essentially
basis independent as it is naturally expressed in the eigen-
basis of the unperturbed Hamiltonian.

In the present Letter, we analyze the question of sensi-
tivity to perturbations in depth. First we introduce a
universal measure for the strength of a perturbation, then
scrutinize Zaslavsky's conjecture, present results obtained
for a particular model system, and are finally led to a
quantification of Zaslavsky's idea.

A comparison of the sensitivity of wave functions to
perturbations requires a definition of the strength of such
perturbations that does not depend on details of the dy-

(lb)

(2)

We note that the factors appearing on the right-hand side
of Eq. (2) each have a well-defined classical limit. The
first can be written as

namics. In defining the strength of BH, we are guided by
the concept of the spreading width [13]. We consider an
unperturbed Hamiltonian matrix H of dimension N with
eigenvalues E;, i =1, . . . , N, orthonormal eigenvectors
@;,i =1, . . . , N, and an average level density p(E) at en-

ergy E. The spreading width I;~, a measure of the
strength of the perturbation BH in its action on the state
@;, is defined as

N
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Here, Eq. (la) defines I;~, Eq. (lb) holds generically (in
particular if the matrix BH is not dominated by the diag-
onal elements) for N» 1, and Eq. (1c) follows from com-
pleteness. We note that I;~ measures the energy interval
over which BH eflectively spreads the eigenfunction @; of
H. Clearly, we are interested only in the average (over a
group of neighboring states @;) of I;1. Let P=(1/n)
&&pp-~ ~@;&&At

~
be the normalized projector onto the cor-

responding subspace. Assuming that p(E) does not
change significantly in the energy interval defined by the
n eigenvalues of H pertaining to P, we have

I' =r~ =tr[PBH'j p/N .

tr[PBH j = 1

2+6

f
Jl dpfdqf(QH) 1

275 6

'f „
dpfdqf . (3)

Here f is the number of degrees of freedom, and V is that part of phase space which corresponds to the projector P.
(Strictly speaking, we should employ the Wigner transform of P in lieu of V but suppress this complication. ) The
remaining factors can likewise be written as phase-space integrals, but phase-space integrals are insensitive to dynamical
features of the Hamiltonian and in particular to integrability or chaos. Thus we have found a universal measure for the
strength of perturbations if the integer n is chosen large enough to guarantee that in either case (regular or chaotic)
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comparable parts of phase space are covered by the
Wigner transform of P.

At this point we have not only defined a measure for
the strength of the perturbation, we have also implicitly
disproved Zaslavsky s conjecture in its most naive form.
Indeed, the spreading width is perhaps the most natural
measure of the sensitivity of wave functions to perturba-
tion, and it is obviously not sensitive to classical chaos.

Although we shall not consider small perturbations, it
is helpful to recall what perturbation theory would make
us expect. The dominant factor at very small level spac-
ings is the energy denominator (E; —E~) '. Since small
level spacings are much more frequent for integrable sys-
tems than for chaotic ones, we will see strong mixing for
integrable systems situations. Hence, a refinement of the
argument is needed. It is supplied by Percival's remark
[5] that, in the integrable case, only states with similar
quantum numbers are expected to be mixed strongly by a
perturbation, while in the chaotic case, the mixing is ex-
pected to be much more uniform. We show below that
this argument is qualitatively correct, and that it is the
uniformity rather than the degree of mixing of the eigen-
functions which distinguishes regular and chaotic sys-
tems.

We thus have to consider the uniformity of the mixing
of unperturbed eigenfunctions by 6'H. For this purpose,
we take the expansion of the orthonormal eigenfunctions
+„of the full Hamiltonian H+BH in terms of the unper-
turbed eigenfunctions @;of H,

+p =Z &rrp@k . (4)
k

Obvious measures of uniformity are the probability dis-
tribution of the expansion coefticients and derivative
quantities like the average participation ratio P and the
average inverse participation ratio P+. The latter two
quantities are defined as averages over n neighboring ei-
gen values,

in obvious notation and with a~, a2 & 0. This system is in-
tegrable for a ~ 2 =0 and chaotic when a ~ 2 is negative and
in absolute value close to but below the dissociation limit,
Iar2I & r'6 (a~+a2). The chaotic Hamiltonian was tested

by a Monte Carlo calculation and was found to have a
chaotic phase-space component of more than 99% [14].

We choose a~ diff'erent from a2 and note that then H as
defined in Eq. (7) is not rotationally symmetric in the
(q i,q2) plane. In this situation, there is a very convenient
way to choose the perturbation 6H for both the regular
and the chaotic case: Together with the operator H
defined in Eq. (7), we consider the operator H'(P) ob-
tained from H by a rotation about an angle P as well as
reflection on one axis in the (qi, q2) plane and define BH
as the diflerence H —H'(P). This procedure allows us to
attain equal average level density and comparable pertur-
bations in the regular and chaotic cases. For fixed a]2
(which determines chaotic or regular situations) the
product aia2 determines the level density, and (for fixed
a~a2) the value of ai (and of P) in turn fixes the strength
of SH as given by Eqs. (2) and (3). Thus we can simul-
taneously have equal level density and almost identical
perturbation strength for an integrable and a chaotic sys-
tem as we would like to have for a simple comparison.
Also the so-defined perturbation leaves the integrable
Hamiltonian integrable and the chaotic one chaotic.
These combined considerations led us to choose for the
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To compare the participation ratios as given by Eq. (5)
with the expression for the spreading width, Eq. (1), the
latter is rewritten in terms of the expansion coe%cients
Qkp as

I '= pl~;, I'(@,—&;)' p(F.;&IN.

.05

Here, 8„ is the eigenvalue of H+6'H pertaining to +„.
To get to Eq. (6), we have written 6'H in Eq. (la) as the
difference between the full and the unperturbed Hamil-
tonian, and have used the eigenvalue equations for both
H amiltonians.

We test these measures on the following model [14]:
We consider two coupled quartic oscillators with the
Hamiltonian

H= 2 (pi'+p2)+&lql+&2q2+&12(qr —q2)',

Wadi il!,I !1, i.j illillL illllilit i.l4, .]Iirtlallli&r

0 200 400 600
E (a! bitr ar y units)

FIG. 1. The intensity spectrum for the (arbitrarily chosen)
eigenstate number 152 of the perturbed system is plotted versus
the energy eigenvalues of the unperturbed system for both the
chaotic and the integrable case over the range of the lowest 600
states. Note the diAerence in scale.
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integrable system a~ =17.8, a2 =60.955, and a~2=0 and
for the chaotic system a~ =35.15, a2 =76.2, and u&2
= —5.0, as well as P =90'.

Using these parameters we find for the phase-space in-
tegral in Eq. (3) at energy E =1 the values 0.4675 and
0.4752 for the integrable and chaotic situations, respec-
tively. Thus we fulfill our criterion for equal perturbation
in both cases to very good approximation. (Scaling per-
mits us to consider one energy only. )

Our quantum results are obtained numerically by a
variational procedure in a harmonic oscillator basis [14].
Figure 1 shows a typical intensity spectrum: We plot the
probability !aj„! [see Eq. (1)] of finding in some fixed
but arbitrary eigenstate +„ofH+SH (here p =152) the
eigenstates N~ of the unperturbed Hamiltonian H versus
the eigenvalue E~ of H, for both the integrable and the
chaotic system. The diAerence is striking: Only a few
lines dominate the integrable case. (Note the difference
in scales. )

We first check whether the spreading widths in both
cases are really equal. To this end, we compute the quan-
tity [cf. Eqs. (3) and (6)] A;=P„!a;„!(6„—E;) as a
measure of I";~ because the level density was fixed to be
equal in both cases. We have calculated the average A

and hvar(A)/A over a range of 2n =100 levels around
E

p
The results are shown in Table I for both the integr-

able and chaotic cases. We note that within 1 or 2 stan-
dard deviations, the mean values 2 agree in both cases,
giving credence to our prescription. We have similarly
calculated the average participation ratios, Eq. (5). In
principle, the summation over p should extend over the
entire spectrum. Obviously, we can only sum as far as
the expansion of eigenfunctions of the perturbed systems
in terms of those of the unperturbed ones is reliable. This
would seriously restrict our statistics, but we can avoid
the problem by summing only over a window of 200
states and renormalizing the amplitudes. The window is

justified by the decay of the peak in Fig. 1.
The results are shown for spectra of a given parity and

averaged over both parities to improve statistics. Yet the
integrable Hamiltonian has an additional symmetry as
parity in q~ and q2 directions are conserved separately
and this symmetry is not broken by our particular pertur-
bation (P =90'). This introduces a trivial factor of 2
that divides the P in the integrable case to have a fair
comparison with the chaotic one. We have to keep this
factor (not contained in the numbers of the table) in

mind when looking at column 4 of Table I where the
average participation ratio is shown. Nevertheless the
participation ratio is significantly smaller for the integr-
able case than for the chaotic one.

Next we study the probability distribution of ampli-
tudes. The diSculty here is that systematic trends are su-

perposed on statistical fluctuations; this is clearly visible
in Fig. 1. We have applied the following procedure to
overcome this obstacle: We took nine levels near the
center of the distribution, and plotted in Fig. 2 the fre-
quency distribution with which an amplitude occurs
versus the (real) value of this amplitude. For the chaotic
case, we find a Gaussian distribution as expected. But for
the integrable case, we find a large percentage of very
small amplitudes as well as a few very large ones. Indeed

.01

00 ~~an/, l Jw

TABLE I. The averages of 8; related to the spreading width
and of the participation ratio are listed for the classically integr-
able and chaotic systems (indicated by I and C). Averages are
taken around diAerent state numbers ip and with a window size
of n = 100 levels. The fluctuations of 2 as measured by
F(A) =v var(A)/A are also shown.

—0.2

.01

0.0 0.2

ip

I 100
I 200
I 300
I 400
I 500
C 100
C 200
C 300
C 400
C 500

2701.0
2227.6
1702.9
1495.2
1370.1

2617.9
2341.0
1793.5
1492.2
1366.9

F(w)

0.62
0.59
0.51
0.43
0.29
0.23
0.19
0.20
0.19
0.20

9.13
9.51
8.96
8.66
8.66

39.0
49.0
50.9
53.5
55.7

0.2—0.2 0.0
a.

JP

FIG. 2. For the lowest 600 states the frequency of the ampli-
tudes of the perturbed in terms of the unperturbed system are
plotted; only the nine amplitudes of the state nearest to the un-

perturbed state were used. Note that the peak for very small
amplitudes was cut in this figure; the two bins exceeding the
frame contain 75.2% of all chosen amplitudes.

531



VOLUME 71, NUMBER 4 PHYSICAL REVIEW LETTERS 26 JULY 1993

1500

(a)

]500

(b)

200 600

R,

+

V

200 400
E„(ar bitcavy units)

600

FIG. 3. For eigenstates 50 to 600 of the unperturbed Hamil-
tonian the expectation values of the perturbed Hamiltonian are
shown for both the integrable (a) and the chaotic (b) system.
Note the regularities in the integrable case.

suits are found for other angles P.
In conclusion, we have established the following re-

sults: (i) We have shown that the spreading width is
semiclassically given by a phase-space integral. This in-
tegral is of a type similar to the one for the level density
and does not contain information about the (chaotic or
regular) dynamics of the system. This disproves
Zaslavsky s conjecture in its simple-minded form. (ii) By
its very nature as a phase-space integral, the spreading
width is a useful measure of the strength of the perturba-
tion. This measure enables us to compare regular and
chaotic cases in a meaningful way. (iii) Using the results
(i) and (ii), we find a qualitatively different behavior of a
regular and a chaotic system under the influence of a per-
turbation as seen in Fig. 2. The very obvious difrerence
can be quantified by taking moments of this distribution.

It is desirable to establish the domain of universality of
the features reported in this Letter, and to obtain a quan-
titative relationship between P —and the spreading width
for the regular and chaotic cases. We hope to return to
these issues in a future publication.

We are grateful to Frangois Leyvraz for many useful
discussions. This work was partially supported by re-
search grants of the University of Mexico (UNAM,
DGAPA), and the computations were performed on the
CRAY of the same university.

in Fig. 2 the probability of finding very small amplitudes
is exceeding the frame. The two bins around zero make
up about 75.2% of the total probability and even if we
reduce it to 25.2% by omitting the zeros due to the above
mentioned selection rule this does not qualitatively
change the picture.

As an important aside, we would like to draw the
readers' attention to a remarkable though unexplained
observation in the integrable case. In an earlier paper
[15] the participation ratio of a certain matrix element
displayed some regular features as a function of the state
number, and we found similar behavior in our calcula-
tions. Particularly striking results were found for the ma-
trix element of the perturbed Hamiltonian in terms of the
unperturbed eigenstates (@t,~H+8H~&bk). In Fig. 3 we
show this matrix element as a function of the unper-
turbed eigenvalue Et, . A striking difference is apparent
between the chaotic and the ordered case. At this point
we do not know whether this feature is a peculiar one of
the quartic oscillator as the calculations of Ref. [15] were
performed on a similar system. Yet it is interesting be-
cause it could be associated with Percival's [5] original
description of close states in the integrable case.

Note that with respect to this figure as well as for all
previous results a perturbation that converts the ordered
system into a disordered one behaves essentially the same
way as for an initially disordered system. Also similar re-
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