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Hypersensitivity to Perturbations in the Quantum Baker's Map
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We analyze a randomly perturbed quantum version of the baker's transformation, a prototype of
an area-conserving chaotic map. By simulating the perturbed evolution, we estimate the information
needed to follow a perturbed Hilbert-space vector in time. We find that the Landauer erasure cost
associated with this grows very rapidly and becomes larger than the maximum statistical entropy
given by the logarithm of the dimension of Hilbert space. The quantum baker s map displays a hyper-
sensitivity to perturbations analogous to behavior found in the classical case. This hypersensitivity
characterizes "quantum chaos" in a way that is relevant to statistical physics.
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Great progress has been made in studying manifesta-
tions of chaos in quantum systems [1], yet there is still
controversy as to whether quantum chaos exists at all [2,
3]. A chief reason for this is that the most important
characteristic of classical chaotic systems —exponential
divergence of trajectories starting at arbitrarily close ini-
tial points in phase spac" is absent from quantum sys-
tems simply because the existence of a quantum scale
makes meaningless the concept of two arbitrarily close
points in phase space.

One can look instead for exponential divergence of tra-
jectories of Hilbert-space vectors, but any such attempt
fails, because the linear Schrodinger equation, with its
unitary evolution, preserves Hilbert-space inner prod-
ucts. This failure does not by itself, however, rule out
quantum chaos [2], for if it did, one could equally well
rule out Hamiltonian classical chaos on the basis of the
area-conserving linear Liouville equation. Two probabil-
ity distributions in classical phase spac" we call these
phase space patte-rns —that are initially close together (in
terms of an overlap integral) stay close together forever,
because the Liouville equation is area conserving. This
suggests an approach to quantum chaos which we pursue
in this paper: seek manifestations of Hamiltonian clas-
sical chaos in the Liouville equation; then ask whether
those same manifestations are present in the analogous
Schrodinger evolution of quantum mechanics.

In an earlier paper [4] we analyzed a prototype of
an area-conserving chaotic map, the baker's transfor-
mation [5], in the Liouville representation; i.e., we fo-
cused on phase-space patterns instead of on single tra-
jectories. Our analysis was guided by the question [6] of
how available work decreases with time when the baker' s
map is subjected to area-conserving random perturba-
tions. An area-conserving abstract mapping corresponds
to an energy-conserving phase-space system, so we iden-
tify two negative contributions to free energy. The con-
ventional one is ordinary entropy, which measures how
incomplete knowledge about a system reduces our abil-
ity to extract work. The other contribution arises from

Landauer's principle [7, 8] that there is an unavoidable
energy cost of k~T ln 2 connected with the erasure of one
bit of information. It follows from Landauer's principle
that the information, quantified by algorithmic informa-
tion [9], needed to give a complete description of a system
state (in this case, a phase-space pattern) also reduces the
amount of available work and thus should make a further
negative contribution to free energy [10, 11],

In our earlier paper [4] we compared two strategies
for preserving the ability to extract work from a system.
The first strategy is to keep track of the perturbed phase-
space pattern in fine grained deta-il, in an attempt to pre-
serve the work inherent in the initial condition. The sec-
ond strategy, which we call coarse graining, is to average
over the perturbation and to put up with the resulting
ordinary entropy increase. We found, for the perturbed
baker's map, that the information needed to implement
the first strategy is overwhelmingly larger than the en-
tropy increase of the second strategy. This means that
the free-energy cost of tracking the perturbed pattern
in fine-grained detail is enormous and far greater than
the cost of the entropy increase that results from coarse
graining. This marked discrepancy in free-energy cost
we call hypersensitivity to perturbations; we conjecture
that it is a general feature of perturbed classical chaotic
systems (but not of classical integrable systems), and we
regard it as the desired manifestation of classical chaos
in the Liouville equation.

In the present paper we compare the two strategies
for preserving work in the case of a quantum system, a
quantum version of the baker's map [12]. Using numer-
ical simulation, we find essentially the same behavior as
in the classical case, as was suggested using heuristic ar-
guments in Ref. [6]. The quantum baker's map displays
hypersensitivity to perturbations and thus can be said to
exhibit quantum chaos.

The concept of algorithmic information has been used
before to investigate quantum chaos [2, 13]. If one de-
fines a chaotic system as one where the algorithmic in-
formation needed to predict a single (unperturbed) tra-
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The basis-transformation operator in N-dimensional
Hilbert space, G~, is defined analogously. The quantum
baker's map is now defined by the matrix

where, as throughout this Letter, matrix elements and
vector coordinates are given relative to the position ba-
sis. The two matrices G~ map position kets in the lower
(upper) half of the position range to their expansion in
terms of momentum kets in the lower (upper) half of
the momentum range, in analogy to the classical baker' s
map. The inverse matrix 62& maps back to the position
representation.

The perturbation operator we use is constructed to
resemble the type of perturbation used in our previous
work [4] on the classical baker's map. We partition phase
space into an even number 2N, = 2N/m, of congruent
perturbation cells, where 2N, and m, ) 2 are integral di-
visors of 2¹In the following we use perturbation cells
that are vertical stripes extending over the entire p range.
Then each perturbation cell contains m, q eigenstates. A
perturbation operator that perturbs each perturbation
cell independently has the form of a matrix with zero el-
ements everywhere except for 2N, square blocks of size
tu, on the diagonal. We choose these square blocks so
that they correspond to a shift in the p direction in a

j ectory grows linearly with time (or number of steps) [14],
then there is classical chaos, but no quantum chaos [2].
Our approach, by focusing on patterns in phase space
instead of trajectories, uses a framework where classi-
cal and quantum mechanics can be treated on analogous
footings. Moreover, since Landauer s principle gives in-
formation an explicit physical meaning by connecting it
to available work, our characterization in terms of hyper-
sensitivity to perturbations is directly relevant to statis-
tical physics.

The classical baker's transformation maps the unit
square 0 ( q, p & 1 onto itself according to

f: (q, p):: (2q —[2q], (p+ [2q])/2),

where the square brackets denote the integer part. There
is no unique way to quantize a classical map. Here
we adopt a quantized baker's map introduced by Bal-
azs and Voros [12] and put in more symmetrical form by
Saraceno [15]. Position and momentum space are dis-
cretized, placing the lattice sites at half-integer values

qz
——

p~ = (j + 2)/2N for j = 0, . . . , 2N —1. The di-
mension 2N of Hilbert space is assumed to be even. For
consistency of units, let the quantum scale on phase space
be 2~6 = 1/2N. Position and momentum basis kets are
denoted by lq~) and lp~). A transformation between these
two bases is performed by the operator G2~, defined by
the matrix elements

2N —1

i=O
(5)

which we call W entropy to distinguish it from ordinary
entropy (log denotes the binary logarithm, as throughout
this paper). For random vectors in 2N = 16-dimensional
Hilbert space, the mean and standard deviation of the
W entropy are given by W = 3.434 + 0.178 bits, a re-
sult obtained on a computer by calculating W(l@)) for
a large number of vectors lQ) chosen at random from an
ensemble distributed uniformly over Hilbert space [17].
(This mean value agrees with the exact formula for the
mean value [18], W = [@(2N + 1) —@(2)]/ in 2, where
4 is the digamma function. ) We compare the result for
random vectors with the first two moments of the W en-

~,-dimensional subspace. Let the momentum shift in
the nth perturbation cell (n = 0, . . . , 2N, —1) be ai„,
where the real number o. is the magnitude of the mo-
mentum shift

andi�

„cf—1, 1). The symmetry condition
x2N — —y = i„(n = 0, . . . , N, —1) avoids rapid oscilla-
tions and thus ensures similarity to the classical case.
The perturbation operator U .. . , is defined by

(U . , ' . , )~I = ~~re*'"~", (4)
where $0 = 0, QI, = QA, i + o.i„(gl (k = 1, . . . , 2N —1)
with n(k) = [k/tu, ]. The parameter n characterizes the
"strength" of the perturbation, whereas w, /2N = 1/2N,
is the area of the perturbation cells.

A perturbed time step consists of first applying the
unperturbed time-evolution operator B, followed by a
perturbation operator U .. .~, with io, . . . , i~. i c
(—1, 1) chosen at random, o. being fixed. We thus allow
for a different perturbation at each step, in contrast to
Ref. [16] where a particular perturbed evolution operator
was applied repeatedly. After n time steps, the number of
different perturbation sequences —or histories —is 2"~ .

Our specialization to vertically striped perturbation
cells involves no restriction relative to our work on the
classical baker's map. There we allowed for (2~m, /2N) x
2 rectangular perturbation cells, which are the image
of vertical stripes under m applications of the baker' s
map, where 2 ( 2N/w, = 2N, . Likewise, the pertur-
bation operator for "rectangular" quantum-mechanical
perturbation cells is U' = B UB™,where U is given
by Eq. (4). Using U with initial state [Qo) is equivalent
to using U' with initial state B [go). The freedom to
choose m—we use m = 0 for vertical stripes —is the same
as the classical freedom to choose the initial position of
the "decimal point" in the symbolic representation of the
baker's map.

As a preliminary step, we show that perturbed evolu-
tion leads after several steps to an ensemble of vectors
that is similar to an ensemble of vectors distributed ran-
dornly on Hilbert space. A useful criterion for determin-
ing the randomness of an ensemble of vectors lQ) is based
on the moments of the quantity [17]
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tropy for an ensemble of vectors created by the perturbed
baker's map in a 16-dimensional Hilbert space. Choos-
ing 2N, = 2 and n = 0.025 = 0.4/2N, we create an
ensemble of approximately 20000 perturbed vectors by
applying different randomly chosen histories for n = 15
perturbed time steps to the initial vector i/0) = ]ps).
We find for the first two moments of the W entropy the
values W = 3.428+0.184 bits, very close to the moments
for a random sample.

As a second check of randomness, we calculate the
distribution of Hilbert-space angles 8 = cos i(](Q' Q)l)
between vectors ]Q) and lg') that have evolved under
the same perturbed quantum baker's map applied to the
same initial state as in the previous example. We com-
pute the Hilbert-space angle between each pair of vectors
in each of three ensembles of approximately 16000 vec-
tors created by applying different randomly chosen per-
turbation histories for 15, 23, and 31 steps. In addition,
we compute the Hilbert-space angle between each pair of
the 2 0 vectors after 10 steps. The resulting distributions
of Hilbert-space angles are displayed in Fig. 1. After 31
steps the closest pair of vectors is 27.1' apart, a strik-
ing demonstration of the "size" of 16-dimensional Hilbert
space, i.e. , of how many widely separated vectors Hilbert
space can accommodate even for a relatively small dimen-
sion. For comparison, Fig. 1 also shows the distribution
f (8) = 30(sin 8)2s cos 8 of Hilbert-space angles for a set of
random vectors. These results show clearly how the en-
semble is randomized by the perturbed quantum baker' s
nlap.

We proceed now to compare the two strategies for
extracting work outlined abov" coarse graining ver-
sus following the evolved vector in fine-grained detail.
We estimate the conditional algorithmic information
AI needed given background information to specify
a typical perturbed vector after n steps and compare
it to the increase in ordinary entropy LH that results

from averaging over the perturbation. Our first example
uses, as before, a 2N = 16-dimensional Hilbert space,
partitioned into 2N, = 2 vertically striped perturba-
tion cells. We choose a fixed perturbation amplitude
n = 0.025 = 0.4/2N and an initial pure state ]$0) = lps),
i. e. , a momentum eigenstate, which corresponds to a hor-
izontal stripe in the unit square. This perturbation can
be described completely by giving one bit per step, to
specify which of the two possible perturbation operators
U, i and U . t is applied. If the logarithmic term [ll]
that keeps track of the number of steps n is neglected,
this sets an upper bound on the information LI. This
upper bound is realized only if two different histories of
perturbed time steps always lead to two different vec-
tors at some level of resolution on Hilbert space. We
choose a resolution that regards two vectors as different
if their Hilbert-space angle exceeds 68 = vr/50 = 3.6'
(l(Q'lQ) l

smaller than 0.998). By comparing numerically
all possible histories, we find that, through 15 perturbed
time steps, att trajectories lead to distinguishable vec-
tors. Figure 2 shows the resulting linear increase in the
information AI.

Figure 2 also shows the ordinary entropy increase AH,
obtained by determining the entropy of the density ma-
trix that results from averaging over all possible histories.
It can be seen that AI is always larger than AH. Indeed,
AH saturates at the value AH „= log2N = 4 bits,
the logarithm of the dimension of Hilbert space, whereas
AI is limited only by AI „—2(2N —1) log(68/2)
150 bits, which is the logarithm of the number of different
vectors Hilbert space can accommodate [6, 19]. Whereas
LHm~„grows logarithmically with the dimension 2N of
Hilbert space, the maximum information LI grows
linearly with 2N and is enormous for macroscopic sys-
tems.

As in the classical case [4], the information AI grows
more dramatically when the number of perturbation cells
is large. Figure 3 displays results for a 64-dimensional
Hilbert space with 16 vertically striped perturbation
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FIG. 1. Distribution of Hilbert-space angles for vectors
evolving under the perturbed quantum baker's map, shown
for diferent numbers of perturbed time steps n. For com-
parison, the distribution for random vectors is also shown.
The dimension of Hilbert space is 2N = 16, the number of
perturbation cells is 2N = 2, the perturbation strength is
o. = 0.025 = 0.4/2N, and the initial vector is l@0) = lps).
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FIG. 2, Conditional algorithmic information AI needed
to track a vector evolving under the perturbed quantum
baker's map, compared to the increase in ordinary entropy
AH that results from averaging over the perturbation. The
parameters are the same as in Fig. 1.
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bits graining than by following the perturbed evolution in
fine-grained detail. Our results provide a compelling mo-
tivation for coarse graining and thus have implications
for the second law of thermodynamics.

R.S. acknowledges the support of a fellowship from the
Deutsche Forschungsgemeinschaft.
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FIG. 3. AI and AH as in Fig. 2, but with parameters
2N = 64, 2N, = 16, n = 0.05 3/2N, and [go) = I3 [pi).

cells, each containing four position eigenstates. The per-
turbation strength is a = 0.05 3/2N, and the initial
state is ~go) = B ~pi), a state whose image under B
has negligible support outside the leftmost perturbation
cell. This means that, in order to describe the perturbed
state after the first time step, in the perturbation op-
erator U~. 0 ~ 7 only the sign io referring to the left-
most perturbation cell must be specified. Since B ]tPo),
Bs go), and B [Qo) extend over 2, 4, and 8 perturbation
cells, we expect the number of bits needed to specify the
perturbed state to grow as P".

o
2& = 2" —1 until the

state extends over all perturbation cells. This behavior
is verified in Fig. 3 using the same method as for Fig. 2.

Given these results and those of our previous paper [4),
we have demonstrated similar hypersensitivity to pertur-
bation in a classically chaotic system and its quantum
analog. In both cases the large information needed to
track the perturbed evolution is due to the large number
of possible ways to perturb a state [6, 20]. In the clas-
sical domain, it is chaos that opens up the large space
of possibilities —phase-space patterns with structure on
finer and finer scales. Quantum mechanics operates in-
herently in an enormous space of possibilities —the pure
states on Hilbert space. Hypersensitivity to perturba-
tions means that more work can be extracted by coarse
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