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Characterization of Spatiotemporal Chaos from Time Series
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The analysis of time series generated by spatiotemporal chaotic systems is discussed. We find
that a Grassberger-Procaccia algorithm with a suitable normalization for the correction of systematic
errors caused by the shape of the attractor is a reliable method for distinguishing between high-

dimensional chaos and noise.

We show that even a quantitative description of the attractor is

possible by means of dimension densities. The results obtained from the time series are in good
agreement with values calculated directly from the generating equations of motion.

PACS numbers: 05.45.+b

Computer based methods for the analysis of time sig-
nals have become an important tool to characterize the
dynamics of deterministic chaotic systems [1]. In this
context, the most established method is the Grassberger-
Procaccia algorithm (GPA) [2,3], which provides the frac-
tal dimension D, of the attractor. It is a common fea-
ture of such algorithms that the number of required data
points increases exponentially with the dimension of the
attractor [4], resulting in exponentially growing require-
ments on measuring time, computer time, and data stor-
age capacity. Because of this fact the GPA has been
applied in most cases only to low-dimensional (typically
D, 5 5) systems.

However, there is a large class of physical and technical
systems which cannot be described by low-dimensional
attractors. Typical examples are spatially extended sys-
tems showing chaotic behavior in time and space [5]. The
dimension D of the chaotic attractor grows with the size
of the system and it is not unusual to find values for D
much larger than 100. In those cases it is impossible to
calculate the dimension D, directly by applying the GPA
to the attractor of the system.

Because of this fact it is generally believed that the re-
strictions of the GPA exclude the treatment of spatially
extended systems showing high-dimensional chaos. To
overcome this, it has been suggested by Grassberger [6]
and Mayer-Kress and Kaneko (7] to calculate “dimen-
sion densities” for spatially extended systems with the
GPA. However, the results have often been criticized. It
is argued that inherent systematic errors of the GPA typi-
cally lead to an underestimation of the calculated density
which might be interpreted erroneously as an indication
of deterministic behavior. Torcini et al. [8] have carried
out very careful investigations of this topic, concluding
that it is not possible to distinguish between spatiotem-
poral chaos and noise relying on the estimate of the di-
mension density calculated with the GPA or similar tech-
niques.

In this Letter we present numerical results for different
model systems showing spatiotemporal chaos. It was not
possible to get unequivocal results from an unmodified
GPA when applying it to comparatively short time series.

We correct these inherent systematic errors by normal-
izing the results to the correlation sums calculated ana-
lytically for an equivalent random attractor. With this
modification we show that on the basis of the GPA, one
cannot only distinguish between noise and spatiotempo-
ral chaos, but one is also enabled to obtain good quanti-
tative estimates of the dimension density. In addition, we
attain a quantification of the space-time coupling which
allows us to distinguish between systems consisting of
many regions of uncoupled temporal chaos and systems
consisting of coupled regions producing real spatiotem-
poral chaos.

The Letter is structured in the following way. First we
will describe the characteristics of the GPA followed by
the introduction of our modification to the interpretation
of the results. After this we will briefly review the defini-
tion and the practical calculation of dimension densities
using Lyapunov spectra. In the last part the dimension
densities of spatiotemporal chaotic systems, calculated
with the modified GPA, will be compared with the results
obtained from the Lyapunov spectra using the equations
of motion.

In the Grassberger-Procaccia analysis, the attrac-
tor is represented in an m-dimensional space, thus
the considered time series consists of vectors x(t) =
(z1(t), z2(t), ..., Tm(t)). The components z;(t) represent
different dynamical variables of the system [9]. After-
wards, for a set of IV, reference points, we calculate
the probability to find a second point in a distance less
than a given radius r by evaluating the correlation sums
C(rym) = limy,~oo(1/NJ) 3,4, O(r — |x(t5) — x(t:)]).
The correlation dimension D, can now be determined
from the slope:

dlog C(r,m)

Dy = lim lim dlogr

r—0 m—oo

(1)

In the practical application we have to deal with finite
numbers of vectors and with a finite noise level. For that
we have to evaluate the slope (1) at finite length scales.
In principle the slope can be calculated even for large
values of r requiring less data points, but the estimation
of D, is believed to be reliable only if the same dimension
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is calculated in a sufficiently large interval of log(r). In
the regions where r becomes comparable with the size
of the attractor we encounter an underestimation of Dy
[10] that depends systematically on r. This is due to
the fact that for reference points closer to the edge of
the attractor than r, the probabilities are smaller than
expected for dimension D, [see inset of Fig. 1(b)].

We choose the following way for dealing with the er-
rors resulting from the influence of the overall shape of
the attractor. We leave the calculated correlation sum C
unchanged and express the necessary changes in terms of
a corrected radius reg(r). Since empty regions outside of
the attractor are considered within r, this effective radius
reff Will be smaller than the original . The calculation
of g is done by considering the correlation sum 6] (r,m)
of a random attractor of the same shape. Knowing that
the slope Alog C(r,m)/Alogreg for the random attrac-
tor has to be m, the explicit calculation of Alogreg can
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FIG. 1. The dimension density obtained by the Grassber-
ger-Procaccia analysis of a spatiotemporal chaotic time series
of N, = 10° vectors is plotted. (a) Using standard GPA,
the calculated slope depends on the considered radius r; no
unequivocal value for the dimension density can be obtained.
(b) Normalizing the correlation sums on the results of a ran-
dom signal according to (2) and (3) gives a good convergence
of the dimension density p2 in the whole interval between
the radius where more than half of the attractor is covered
(log,7 &~ —0.8) and the region where the number of data
points is too small to give reliable statistics for higher dimen-
sions (log, 7 & —3.5). The inset illustrates how a large radius
r exceeds the area of the attractor, making it neccessary to
introduce a smaller effective radius r.g. As described in the
text, this effective radius is calculated by considering a ran-
dom attractor (p = 1) of the same shape.
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be replaced by Alog C(r,m)/m, so we are ending up with

__ AlogC(r,m)

Dg/m = = .
Alog C(r,m)

)

The correlation sum C is calculated for a random at-
tractor with a probability distribution that is similar to
the distribution of the original data on a macroscopic
scale, but that has a nonfractal structure on the micro-
scopic scale. For the case m = 1, this property can be
achieved by dividing the range of the quantities in our
time series into a limited number of classes N, and as-
suming constant probability density within each class.
The details of this partitioning are not crucial as long as
the global shape of the 1-dimension probability distribu-
tion can be reproduced; in our simulations we are using
N, = 42. We denote the half-width of these classes by a
and the probability density in class j will be called p;. For
such a distribution the correlation integral can be calcu-
lated analytically using directly the definition of C(r, m).
Every reference point has to be taken into account ac-
cording to the probability of its class p,. For this class
there will be a contribution by the classes that are located
within the radius r. These are at least the classes in the
interval n & h with the integer h = int(r/2a) and an ad-
ditional contribution of the classes at the boundaries, de-
pending on the distance of the boundaries d = r—2ha—a.
The summation over all intervals results in the following
expression for the correlation sum for random numbers
[11]:

e & DPnth + Pn—h
O(r1) =S pa| 402y p; - ’H'T"_(a —d)?
n=1 j=n—h
+ Pnth+1 + Pn—h—1 (a + d)2 . (3)

2

If maximum norm is used to calculate the correla-
tion sums for arbitrary embedding dimension m and the
multidimensional probability distribution factorizes like
Pi(z)j(y) = Pi(z)Pj(y)» the corresponding sum for random
numbers can be obtained as the product of all the C(r, 1)
in every direction. If in addition the probability p; is the
same in all directions (which is normally true for the spa-
tiotemporal systems we will analyze below), we get the
simple expression C(r,m) = C(r, 1)™.

Let us now consider the systems showing spatiotem-
poral chaos. As standard models for spatially extended
systems we are using coupled map lattices (CML) [5,12]
consisting of logistic maps or tent maps as well as chaotic
neural networks [13]. Both of them are discrete in space
and time and are defined by a nonlinear local mapping
and a spatial coupling. The definitions of the systems
are briefly described in the footnotes [14,15]. When the
equations of motion are known, the spectrum of Lya-
punov exponents can be calculated [16] even for a high-
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dimensional system to characterize the dynamical prop-
erties of the attractor [17,18]. It turns out that for a
sufficient size N of the system the distribution of the
N Lyapunov exponents A; can be described by a unique
function L(¢/N) = A; [6,19]. The Lyapunov exponents
are connected to the fractal dimension of the attractor via
the Kaplan-Yorke formula [1,20], allowing us to calculate
a Lyapunov dimension Dj directly from the spectrum.
This leads to the conclusion that the dimension of such
a system is an “extensive” quantity that grows linearly
with the size of the system. For that, it is reasonable to
define a size independent “specific” dimension or dimen-
sion density pr, := limy—o0 Dr/N.

We calculate this quantity for many parameter values
of the considered systems and find a very good conver-
gence of pr, in dependence of N. Therefore the attrac-
tor’s dimension of a large system can be determined from
the properties of a smaller system. If the boundary con-
ditions can be neglected, the considered smaller system
may also be a subsystem of the larger system. We have
checked this idea by calculating the Lyapunov dimension
Dy, in a chaotic network, considering only subsystems of
size N, while the influence of the rest of the system is
neglected. It turns out that in this case the dimension
Dy is growing linearly with the size of the subsystem N,
and the slope is consistent with the dimension density pr,
calculated for larger systems.

These results imply that it might also be possible to
use the GPA for the calculation of a quantity

p2 = Da2/m (4)
by choosing an equivalent procedure to analyze measured
time series. One will determine the dimension density
of a large system by reconstructing the attractor from
the time series of a small subsystem and calculating the
dimension Dy with the GPA. In contrast to the standard
GPA we do not expect a convergence but a linear growth
of the calculated dimension with increasing size of the
subsystem N; = m.

In order to test this assumption we try to calculate
the dimension density ps for a system of 1000 coupled
tent maps (a = 1.7,e = 0.2) [14] using a time series of
N, = 10° vectors x(t) = (z},2?,...,2). The results of
the original GPA as shown in Fig. 1(a) are not so easy
to interpret since a different value of ps is calculated for
every radius r. There might be a convergence for smaller
values of r, but the number of 10° points is too small
to achieve any reliable statistics in this region. The fact
that a set of completely different values for p; can be
concluded from this result and one cannot exclude that
p2(r) will reach 1 for smaller values of » was the main
point of criticism on the application of GPA on high-
dimensional systems. However, when we are normalizing
the results of the GPA in order to avoid the systematic
errors in the way described above according to (2) and (3)
we end up with a satisfying convergence of the dimension
density in a comparable large range of r [Fig. 1(b)]. Thus
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FIG. 2. The convergence of the dimension density in de-
pendence of the considered size of the subsystem m is plotted
(symbols) and compared with the results calculated from the
analysis of the Lyapunov dimension (solid lines). A good
quantitative agreement can be observed. The results for the
following systems are plotted (compare [14,15]): ¢, Gaussian
random numbers; O, CML with logistic map (a = 4, € = 0.4);
*, CML with tent map (a = 2, € = 2/3); v, CML with logistic
map (a = 3.9, ¢ = 0.8); », neural network (k = 30,9 = 1).

it is possible to determine p, with an accuracy better
than 10%.

Applying this method to time series of different sys-
tems showing spatiotemporal chaos as well as to random
numbers we observe in any case a convergence of the cal-
culated dimension density as depicted in Fig. 2. The
dimension densities for all deterministic systems are well
below the value of ps = 1 calculated for the random se-
quence. Furthermore, we find a good convergence of p;
towards the values of pj, calculated directly from the Lya-
punov spectra via the Kaplan-Yorke formula, indicated
by the solid lines in Fig. 2 [21]. The dimension densities
for many different systems are summarized in Table I. It
shows that normalized GPA enables us to calculate the
densities py from time series quite correctly. It should
be emphasized that the total dimension cannot be cal-

TABLE I. The dimension densities p; calculated using the
normalized GPA are compared with the py calculated directly
from the Lyapunov dimension. Both methods are applied
to different systems with different sets of parameters [14,15]
showing that the results are consistent.

System Parameter oL P2

Random 1.0 1.0

Tent? a=1.7 =04 0.81 0.70
Logist a=3.9, ¢=0.8 0.51 0.51
Tent a = 2.0, €e=0.66 0.66 0.63
Logist a = 4.0, e=0.5 0.65 0.67
Logist a=4.0, =04 0.76 0.77
Neural k = 30, g=1 0.24 0.24

2GPA of the tent-map system using N, = 10® vectors indi-
cates that p» is really smaller than pr in this case.
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TABLE II. The propagation velocities v of defects that are
calculated directly from the simulations are compared with
the quotient of the “spatial” and the “temporal” dimensions
o/p. Since an error of approximately 10% can be assumed for
the calculated dimensions, the results are in good agreement.

System Parameter v o/p
Tent a=1.7,e=04 0.50 0.54
Tent a =20, ¢=0.66 0.78 0.7

Logist a=3.9, =08 0.68 0.58
Logist a=4, e=04 0.51 0.55

culated directly with any realistic amount of data and
computer time, since a density of po = 0.8 means an
attractor dimension of Dy = 800 in our system of 1000
coupled maps.

Following an idea of Grassberger [6] we characterize
the coupling between the spatial and the temporal de-
gree of freedom by the average propagation velocity (or
“speed of light”) v of defects [22]. In a system which is
not coupled spatially, defects would not propagate at all
(i.e., v = 0). For finite spatial coupling we generally ex-
pect a velocity that increases with the coupling strength.
In simulations, an undisturbed and a disturbed system
can be iterated separately and the velocity v can be de-
termined directly from the difference of both results. If
solely the time series of a large system are available, v
can be calculated from the dimension density of a “space
series” of vectors formed from subsequent maps in spatial
direction according to x(i) = (@i, 2l 4, ..., i, ,_1). Us-
ing these vectors to represent the attractor and applying
our method we obtain a dimension density ¢ that is con-
nected with the propagation velocity via v = o/p [6]. In
Table II we compare the values calculated directly from
the simulations to the values obtained from the analysis
of the time series. Again we find a good quantitative
agreement of both results.

In conclusion, we have shown that time series of sys-
tems showing high-dimensional spatiotemporal chaos can
be analyzed successfully by calculating the dimension
density with a normalized Grassberger-Procaccia algo-
rithm. The good quantitative agreement with values
which are calculated directly from the equations of mo-
tion makes us believe that this is a reliable method even
for systems for which these equations are not known.
Since the normalization of the correlation sums on the
results for random numbers enables us to choose com-
parable large radii r, this method should work even for
signals with small additional noise.
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