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Solution of Some Integrable One-Dimensional Quantum Systems
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We investigate a family of one-dimensional multicomponent quantum many-body systems with an
exchange interaction based on the inverse square potential. We show these systems to be integrable,
and exploit this integrability to completely determine the spectrum, degeneracy, and thermodynam-
ics. The periodic inverse square case is worked out explicitly. Next, we show that in the limit of
strong interaction the "spin" degrees of freedom decouple and thus we obtain a complete solution to
a lattice system introduced recently by Shastry and by Haldane. Finally, we emphasize the simple
explanation for the high multiplicities found in this model.

PACS numbers: 03.65.Db

The plan of this paper is to first review integrable sys-
tems and the I ax technique, show that certain modified
systems with an exchange interaction are integrable, give
the general solution to these systems and an explicit so-
lution for an important example, then to produce from
this solution by an appropriate limit the solution to a
family of lattice problems, and finally we discuss what it
all means. The impatient reader may skip to the closing
paragraphs for a summary of the results.

If we consider a classical system of N one-dimensional
particles, then it has been shown by Lax [1], Moser

[2], and Calogero [3] that for certain potentials one can
find two Hermitian N x N matrices L and A that obey
the Lax equation dL/dt = i[A, L]. Thus L evolves by
a unitary transformation generated by A, and hence
det[L —ojI] is a constant of motion. Expanding the de-
terminant in powers of w, we find N integrals of motion
det[L —ojI] = Qp( (~ J, (—(o)~ j, J' = 1, . . . , IiI. Fur-
ther, these integrals have been shown to be in involution,
and thus the system is integrable.

The two matrices are given as Ask = 6~k Qi~& 1
p(xj-

xi) + (1 —6jk)P(xj —xk), and Ljk = 6jkyj + i(1—
b'jk)n(xj —xk). The functions v(x), p(x), and P(x)
are even, while n(x) is odd. They obey the equations,
v'(x) = —2ci(x)P(x) P(x) = —~'(x) and ~(x+y) h'(y)—
p(x)] = n'(y)a, (x) —n'(x)o. (y). Calogero [3] has shown
that the most general solution to these equations is given
in terms of the Jacobi elliptic function sn(x~m) as

A
n(x~m, A, r) = Aa(rx) =

sn K2:m

p(x~m, A, r, c) = Arp(wx) + c = AKa (rx) + c
AK +c,

snz(rx~m)

v(x) = A o. (Kx) + vp .

Calogero [4] has also demonstrated that if one replaces
the classical dynamical variables with the corresponding
quantum mechanical operators, det [L ojI] is we—ll defined
with no ordering ambiguity, and the quantum mechani-
cal commutator (H, det[L —wI]) = 0. Thus, the Jz are
still constants of motion. Finally, Calogero showed that
[[det[L —ojI], det[L —cu'I]] = 0, and thus the quantum
system is also completely integrable.

For the general classical system integrability tells us
something concrete, namely that the motion in terms of
action-angle variables is on a torus. However, for the
general quantum system integrability seems to buy one
almost nothing. The exception is for those special cases
which support scattering, i.e. , systems which Hy apart
when the walls of the box are removed. In these cases, in
the distant past and future the Lax matrix L approaches
a diagonal matrix, so that det[L —aI] = Qi«~(pj —~).
Thus the individual momenta pz are conserved in a colli-
sion, and hence the wave function is given asymptotically
by Bethe ansatz. Sutherland [5] has exploited this fact to
completely determine, in the thermodynamic limit, prop-
erties of systems interacting by potentials of the forms

v(x) = g/x, g/sin (x), and g/sinh (x), including the
Toda lattice. We emphasize that no features of the proof
of integrability are needed. All we need is to know it to
be integrable, by whatever method. (We might even just
assume it to be integrable, and deduce the consequences. )

Although the previous problems are multicomponent
problems, in fact statistics enters only trivially, due to
the strong repulsion of the potential at the origin. Poly-
chronakos [6] has modified this problem, allowing parti-
cles to penetrate by means of an exchange interaction.
He then proves the integrability of this modified prob-
lem. We now oKer an alternative proof of integrabil-
ity. If P&I, is the permutation operator that permutes
particles j and k, let us modify the Lax matrices to be
Aj k = /jj k Qtc'g ') Pjl'y(xj xt ) + (1

beak)Pjkp(xj

xk) &
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two-body scattering matrix, since the N-body scattering
is simply a product of all N(N —1)/2 scatterings. At
the same time, we can gain some confidence by confirm-
ing the consistency of the two-body scattering matrix; it
must satisfy the Yang-Baxter equations. With the rel-
ative coordinate r = z2 —xi, the potential is v(r)
(A2 —AP)/r, so depending on whether the wave func-
tion is even or odd, the potential is v~(r) = A(A ~ 1)/r2.
The radial equation then is —p" + cr(o —1)p/r2 = k~y,
with a. = A or A+ 1 according to whether the wave func-
tion is even or odd. The solution is given as p(r)
~rJ~ ig2(kr), r ) 0. For the even and odd solutions
then we have &p~(r) —+ e '"" + e ' ~e'"", r —+ oo. To
construct a scattering state in which particle I with mo-
mentum k1 is incident on particle 2 with momentum
k2, k1 & k2 we take the linear combination

1
[y + y ]~ e~(~&+&+~&+2) x (( z

2

and Lip = b~qp~ + i(1 —b~i, )P~icn(x~ —x~). We as-
sume that the new potential vj@ commutes with Pjj, .
We then seek to satisfy a quantum Lax equation of the
form(H, Lj = [L, A]. Here the First fancy commutator is
a quantum mechanical commutator between operators,
while the second commutator is an ordered matrix com-
mutator. In order that these equations be satisFied, one
finds that the functions n(x), P(x), and p(x) must satsify
exactly the same equations as before. The potential now
is

dkv (k)

v, i, (x) = A n (rx) + A~p(rx)P, i, =2 2
A2 + A~PjI,
sn2(Kx~m)

We will henceforth be interested in a particular case.
I et K = i, A = i, c = —1, and m ~ 1, so that n(x) ~
cot(x), p(x) ~ —1/sin (x) = —1 —n (x), and n'(x) =
—p(x) ~ —1/sin (x) = p(x). Restoring scale factors,
we have a potential uzi, (x) = (A2 —AP&i, )r2/sinh (Kx).
(We could as well have a sine instead of a sinh. )

The signi6cance of this case is for the form of the Lax
A matrix. Since P(x) = —p(x), then deFining a vector il
with rl = 1, we see Arl = il+ A = 0. This allows us to Thus, there is no reHection, and the particles pass

3
construct constants of motion by I„=@~I,"g, since through each other with only a phase shift-, e ' ~. Con-

f[~ I ]]
t ~ L~]] t Q (Lj [H LjLN i ~

~
—sis«ncy is not an issue. This is a surprising result with

important consequences.0(j(N —1
We now place the particles on a large ring of circum-

= gt ) (L'[A, L]L ' 'jul ference L, making the problem periodic. We thus need to
0(j(N —1 replace the potential with some periodic potential, such

=~t(AL~ ' —L" 'A-~~=O-. as v(x) = (A —AP)7r /L sin (~x/L), which reduces to

B Jacobi s relation for commutators [[I I j (A —AP) /z in the limit L —+ oo, and which therefore

stant of motion, and since this is a system that supports has the same thermodynamic limit. To rePeat: We will

scattering, we see jI„,I~j ~ 0, and hence tne system is be giving the exact solution for the inverse sine squared

compieteiy integrabie. Thus once again, the individuai exchange potential in the thermodynamic limit of an in-

momenta pj are conserved in a collision, and hence the finite system with finite density.

f t o tot 11 b B th t . T~k~~g the jth p~~ti~l~ aro und the»ng of circum «-
Th llo ~ o to o i t 1 d t ~, th th ~ o ence I it Scatters from every Other particle with a net

dynamic limit properties of systems interacting by po-
) (A2 AP)/ 2 d (A2 AP)/

~ h2( )
function is p«iodic. Thus the k»«isfy the equation

as well as the periodic versions of these such as (A2 — [ ~ ~i(Ai)
AP)~ /L sin2(xx/L) in the limit as L ~ oo, density the logarithm, k~ = k~ +vrA/Lpi&&~) sgn(k~ —ki). Here

Gnite. kc = 2vr integer/L are the noninteracting momenta with

The input for the Bethe ansatz wave function is the k1 & k2 » . kN. We easily solve for the k's obtaining
k~ = ko + m.A(N + 1 —2j )/L. Then the energy is

) . k~ = — ) (kz) + ) kz(N+1 —2j) + vr A N(N —1)/6L~,
1&j&N 1(j(N 1&j(N

while the momentum is P = Pi( (~ k~ = Pi&.(~ ko. All of this is just a repetition of the old results [5] for the
usual 1/r2 potential, which in fact is a special case of this interaction with a single species of particle.

Although the energy eigenvalues are exactly the same, these levels are now highly degenerate. In fact, the degeneracy
is exactly the same as the free particle degeneracy when A ~ 0. Thus, let us introduce occupation numbers v (k),
equal to the number of particles of species n with noninteracting momenta k. Thus v~(k) = 0, 1 for fermions, and
v (k) = 0, 1, 2, . . . for bosons. Then the energy E is given by

E/L= ) dkv (k)k + —) dk' vp(k') ik —k'i + ~ A d /64' Sa
p

—OO

l
4w

dk v(k)k + A

8x
dk v(k) dk' v(k')ik —k'i+ vr A d /6.
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Here, the density of species n is d = N /L
~' f dkv (k), v(k) = Q v (k), and d = N/L =

d~ =
2 J dk v(k) is the total density. The degen-

eracies are now expressed in terms of the usual entropy
S, as S/L = (1/2vr) Q f dk(+l)(1+ v ) ln(l + v )—
v~ ln(v ). (Here, and in what follows, the upper sign is
for bosons, while the lower sign is for fermions. )

We can now determine the equilibrium occupation
numbers v~(k) as those which maximize P/T = S/L-
E/TL + Q p~N~/TL. This gives the familiar ex-
pression v~ = 1/[ei' ~ 1~+ p 1]. In this expression,
e = k /2+ (A/2) f dk'v(k')[k —k'[+ vr A d2/2. Dif-
ferentiating, we find for the interacting momenta p that
appear in the asymptotic Bethe ansatz, p = z' = A: +
(A/2) f dk'v(k')sgn(k —k'). DifFerentiating once again,
p' = z" = 1 + Av = pdp/dz = (d/de)(p2/2). Thus,
integrating, we obtain p2/2 = e + AT+ (+1)»(1 +

1&T). We may then go back and write the den-

dp „.This gives us a complete
solution for the thermodynamics.

For instance, if we consider a system consisting of two
species of bosons, say + and —,then taking py = p, + h,
we fin e "~ " = [e&' 4'1~ +cosh(h/T)] —sinh (ti/T),
so e&' " ~ = [e i' ~ A + sinh (h/T)] ~ —cosh(h/T).
This then allows us to write v~ as an explicit function
of p, which may be integrated to give d~ as a function
of h~, and which in turn can be integrated with respect

to h~ to give the free energy, which can be referenced to
the known one-component system at h+ —+ oo.

At this point, let us look at the ground state energy
as a function of the densities (d j. This is easily done,
and it is only for the ground state when T = 0 that we

expect singularities. We assume f species of fermions
with densities dq & dq & & df, and a total of d~
bosons of any species, so the total density is d. Then the
occupation numbers are the free particle ground state
occupation numbers, and the integrals in the expression
for the energy are easily evaluated to give

6E/~zL = (1+2A) ) d + 3Ad~ ) d
1(ACf 1&n&f

+A ) d (d +3dp)+A ds.
1&a(P&f

Because this expression is only valid for a particular or-
dering of the densities, the ground state does have singu-
larities whenever d = dp. A Taylor expansion gives the
singularity as E/L = ~dp

—d [, so the susceptibilities
do not diverge. The singularity structure, and even the
nature of the singularities, is very similar to that found
previously for a short-ranged lattice exchange model [7].

Examining the potential energy as A ~ oo, we see that
the particles crystallize into a lattice with lattice constant
1/d, and so the elastic modes of this lattice, and the
compositional or "spin" modes on the lattice separate.
We thus have as A —+ oo

7r2 vr'P
L2sin [vr(x~ —x&)/L] N2 sin [z(j —k)/N]

The Harniltonian for the elastic modes is just the familiar one-component system [5], although with a coupling constant
A . We have defined the spin Hamiltonian 0, with exchange constant unity, although the effective exchange constant
of the last term of H is Ad . The two-species problem was first studied independently and simultaneously by Shasr, ry
[8] and by Haldane [9]. Thus we see that by an appropriate limiting process we may determine the thermodynamics
of this spin Hamiltonian exactly. For the spin problem, the appropriate concentrations are m = N /N = d /d.

Let F(T, (N~), L) be the free energy for the original continuum exchange problem. Then it is seen on dimensional
grounds to be of the form LTs~zf((d~)/Ti~2). Given a set of "chemical potentials" (6 ), such that P h = 0, then
we make a partial Legendre transformation,

F(T, (N~), L) —) h~N~ = F(T, (h ), N, L) = LT ~ f(d/T ~, (h )/T ~ ) .

(Free energies are identified by their variables. ) Then
N = OF/Oh, so if d—(d, (h )) = Of (d, (h —))/Oh,
we can write d~ = T ~zd (d/T ~, (h~)/T), which for
T = 1 is simply d~.

Returning now to the limit as A ~ oo, and setting
T = 1, we have f((d j) ~ fi(d) + df, (l/Ad, (m )).
Here fi (d) is the free energy density for the one-
component system [5] with coupling constant A, and

f, (T, (m )) is the free energy per site for the spin system.
Again making the partial Legendre transformation, we
find f, (T, (h )) = Iim~ QAT[f(1//AT, (ti j/T)—
fi(1/v AT)]. Remember, in the functions on the right-
hand side, the erst argument represents the density

d = 1/+AT ~ 0 as A ~ oo. Finally, the relation-
ship is a little clearer in terms of the concentrations,
m = lim~ d /d((p~)), where the chemical poten-
tials are (p ) = (p + ti /T), and p is adjusted to give
1 = TAdz.

Referring to our previous explicit results, in the limit
as A ~ oo, with 1 = TAd, then m = d /d = 1/27r =
f dpv /v, with v = 1/[exp(z —h /T) ~ 1], and

(p2 —x )/2 = T P (+1) ln[lpexp(h /T —e)]. This gives
us a complete solution, since the concentrations can be
integrated with respect to (6 j to give the free energy.
The free energy is referenced with respect to the trivial
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case of m = 1 for some o, . For a two species prob-
lem of either both fermions or both bosons, our results
reproduce Haldane's conjecture based on his numerical
investigation [9]. We emphasize that one changes the
sign of the spin Hamiltonian from ferromagnetic to an-
tiferromagnetic simply by changing the statistics of the
particles from Bose to Fermi.

Let us now summarize what we have accomplished.
We have investigated a family of one-dimensional multi-
component quantum many-body systems, interacting by
an exchange interaction based on the familiar family of
integrable systems which includes the inverse square po-
tential. These systems are shown to be integrable. Since
these systems support scattering, the asymptotic wave
function is given by Bethe ansatz, and consequently the
spectrum can be completely determined, in the thermo-
dynarnic limit. The interactions that can be solved in this
way include v(x) = (Az AP)/x —and (A2 AP)/ s—inh (x)
at finite density, as well as the periodic versions of
these such as (A —AP)7r /L sin (mx/L) in the limit as
L —+ oo, density finite.

We explicitly work out the case of the inverse square or
inverse sine square potentials, and demonstrate that for
this exchange potential particles scatter without reHec-
tion. They pass through one another with only a phase
shift, and this phase shift is independent of the identi-
ties of the particles (and the momentum as well). As
a consequence of this perfect transmission, there can be
no Bragg reHection to split the energy of the even and
odd solutions when the particles pass around the ring.
Instead we have degenerate states, and so we could take
a linear combination ~which, for a two-component sys-
tem, would have all particles of one type going clockwise
around the ring, while all particles of the other type go
counterclockwise. Yet this state would be an eigenstate
of energy. This then explains the very high degeneracy
observed in the spectrum; it is just the degeneracy of the
free particle system. We can offer other examples of sys-
tems without reHection, with similar behavior. In fact, it
is clear from the discussion, that by using adiabatic con-
tinuity, the quantum numbers of the states can be taken
as the corresponding quantum numbers of the free par-
ticle states. Singularities occur only in the ground state,
and these are exhibited.

Finally, it is demonstrated that for each of these sys-
tems, taking the limit of infinite coupling constant ap-
propriately gives the solution to a corresponding lattice

problem. One could easily prove the integrability of these
lattice systems directly using the Lax technique. How-

ever, application of the asymptotic Bethe ansatz directly
to the lattice is plagued by umklapp problems; the mo-
menta are pushed by the interaction outside the Brillouin
zone [10]. The limiting trick avoids these complications.
Taking this limit in our explicit example, we obtain a
complete solution to a corresponding lattice system in-
troduced recently by Haldane and by Shastry. Our solu-
tion reproduces Haldane's numerical results. This system
exhibits very high multiplicities; we find these multiplici-
ties to be just the familiar degeneracy of free particles. It
arises naturally from the absence of reHection, and hence
of Bragg reHection and the consequent splitting of levels,
and is nothing more. This seems to us a good explana-
tion.

The success of the asymptotic Bethe ansatz has been
rather dramatic, so let us here reiterate the philosophy
behind the method. To justify using the asymptotic
Bethe ansatz, one needs all of the following: a system
which supports scattering, a proof of integrability with
integrals that depend only on the asymptotic momenta,
and a valid virial expansion. Given these, and using only
the two-body scattering data as input, one can deduce all
thermodynamic properties, including ground state prop-
erties and low-lying excitations, within the phase for
which the virial expansion is valid. Often other phases
may be reached by symmetry.

We conclude by reemphasizing that there are many
other interesting systems to be explored in detail in the
future.
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