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New Upper Limits on the Tau-Neutrino Mass
from Primordial Helium Considerations
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In this paper we reconsider recently derived bounds on MeV tau neutrinos, taking into account
previously unaccounted for effects. We Bnd that, assuming that the neutrino lifetime is longer than

100 sec, the constraint N, g & 3.6 rules out v masses in the range 0.5 & m & 35 MeV for
Majorana and 0.3 & m & 35 MeV for Dirac neutrinos. Given that the present laboratory upper
bound is 31 MeV, our results imply an upper bound of 0.5 MeV for Majorana neutrinos and of 0.3
MeV for Dirac neutrinos.

PACS numbers: 98.80.Ft, 12,15.Ff, 14.60.Gh, 98.80.Cq

Despite a considerable experimental efFort it is still un-
known whether or not neutrinos have a nonzero mass.
The following upper bounds are known [1]:

m. &10eV,

m „&270 keV,

m~ ( 31 MeV.
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More stringent bounds can be determined from cosrno-
logical considerations. Assuming that there is no cosmo-
logical constant, the masses of light (m ( 100 MeV)
stable neutrinos are bounded by the Gerstein-Zeldovich
limit [2] which can be written as [3]
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where t~ is the age of the Universe and htpp = H/(100
km/sec Mpc) is the dimensionless Hubble parameter. By
most estimates t~ ) 12 Gyr and 0.5 & h & 1. Thus
the cosmological upper bound for the neutrino mass (all
weakly interacting flavors) is 40 eV. If there is a nonzero
cosmological constant the bound is somewhat less restric-
tive, m ( 200 eV [4]. These bounds do not apply if neu-
trinos are unstable with lifetimes smaller than the age of
the Universe. It has been pointed out [5] that nucleosyn-
thesis considerations can further constrain the mass of an
unstable w neutrino. Nucleosynthesis calculations, along
with data on the light elements abundances, constrains
the number of effective neutrino species contributing to
the cosmic energy density N, to be less than 3.3 [6). In
this paper we impose the constraint K & 3.6, as this is
the 3o bound. (Recent data also seems to indicate that
this bound may be more appropriate [7].) This bound
is a consequence of the fact that the rate at which the
Universe cools depends on the total number of species
contributing to the cosmological energy density which in
turn determines the light element abundances. Naively
one might think that the contribution from a heavy neu-
trino species with m 1 MeV could be neglected since its

d'p
(2 ), fq(& t) (3)

energy density was assumed to be Boltzmann suppressed.
However, after a massive neutrino decouples and becomes
nonrelativistic, its energy density grows relative to that
of a massless species. Therefore, if the number density of
a massive species at freeze out is on the order of the num-
ber density of a massless species, then the heavy species
may have a greater effect on the light element abundance
than a massless species.

In this paper we reconsider the most recent bounds on
MeV neutrinos, which were derived in Ref. [8]. By using a
more accurate treatment of the thermodynamics, as well
as taking into account the change in the number density
due to residual annihilations, we are able to strengthen
the bound in [8]. We find that there is no allowed window
between the experimental bound and the nucleosynthesis
bounds, even when using the more conservative bound
N ( 3.6 (Ref. [8] used the bound N ( 3.4).

In the standard calculations of the relic abundance of a
particle species disappearing due to annihilation, the fol-

lowing two essential assumptions are made: The particles
in question remain in kinetic equilibrium, and Boltzmann
statistics are applicable. In this case the Boltzmann ki-
netic equation can be reduced to an ordinary differential
equation. If the species considered is relativistic or non-
relativistic at the time of decoupling, the equation can
be greatly simplified and relatively accurate analytical
solutions can be found. However, for a species which is
semirelativistic when it decouples, there is no known ana-
lytical approximation and one has to integrate the Boltz-
mann equation numerically. As such, we will present
some of the details of the calculations.

If we are concerned with the abundance of species Q
then the Boltzmann equation is given by (we specialize
to the case g + 2 ~ 3+ 4)

" + 3Hng = C[f] "+, (2)
dt 27r s Eq

where H = R/R is the Hubble parameter. In this nota-
tion
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f~(E, t) is the phase space density of species Q, and g is the number of degrees of freedom for g. C[f] is the collision
term given by

and

d
C[f] = —b

I ) p I(2 ) dIIqdII dII dII [IMy I (fgf (1+f )(1 + f ))
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The amplitude M is summed over initial and final spi.ns. Assuming that the initial and final states are in kinetic
equilibrium we may write f = n exp( —E/T)/ne~. Equation (4) may be written as

dna R (n@n2 —n@ n2 )
EQ EQ

+ 3—ny = g~g2 —dIIydII2 ovMell«exp[ —(E~ + E2)/T]dt B ng n2
(6)

Following the notation of Ref. [9] we have defined

—Ive x v21] (7)4EyE2

where F is the particle Aux. In the nonrelativistic limit
the Moiler velocity reduces to the relative velocity.

It is convenient to introduce the dimensionless variable
x = m/T and the relative number density r = n/no,
where m is the mass of annihilating particles and np is
conserved in a comoving volume. (Often the number den-
sity n is normalized to the entropy density s. This choice
is convenient because s is usually conserved in the comov-
ing volume. However, if a species is annihilating while it
has considerable energy density, then when it drops out
of equilibrium the entropy will not be conserved. ) In

It can be shown that [9]

(~VMeiier)
m2

o.(s —4m2) ~sKi (~s/T)
8m4TK2(m/T) (9)

In this equation Kq and K2 are the modified Bessel func-
tions and s = (p@ + p2)2. The squared amplitude inte-
grated over the final particle phase space, for the anni-
hilation of two Majorana neutrinos with mass m„ into
fermions with mass mf is given by

1 terms of these quantities the Boltzmann equation takes
the form:

dr no 2 2
(O VMeller) (l rEQ) .xTT
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The analogous expression for the case of annihilating Dirac neutrinos is given by

tU?7l
dIIsd114

I
M ID ——32vrG+48 (Cv + CA)(s —mf —m„v~ /s ) + 4vrGz (Cv —CA) (s/2 —m ) . (11)4):

spins

We have defined vj = (s —4smy), where mf is the mass of the final state particle, which for our purposes is the
electron, or the other neutrinos species which we will take to be massless. In the nonrelativistic limit the cross section
for the annihilation of Dirac neutrinos reduces to

oDvzel = m„(1 —z ) (Cv + CA) 1+ —
I

5 —2z + 2 I
+ (Cv CA) —1+0 —+

GI' 2 2 1/2 2 2 ~ l 2 3 l 2 2 z 2
27r 6 1 —z2) 2 2 2(1 —z') y

(12)
where z = mf/M, mf is the decay product mass and
p is the velocity in the center of mass frame. v„l = 2p
in the rest frame of the plasma. YVe include this expres-
sion because our result divers slightly from those stated
previously in the hterature [10—12).

To perform the numerical integration it is necessary to
specify the function no(T) as well as the function T(t).

In the simplest case the energy density is dominated by
relativistic particles in thermal equilibrium T = —HT
and np oc T . In what follows we take np = 0.181T
which corresponds to the equilibrium number density of
massless fermions with two helicity states. The Hubble
parameter is given by the expression
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H = 8vrp/3Mp2i ——1.66~g„T /Mp(. (13)

In this simple case all the quantities are de6ned in terms
of the plasma temperature T and the numerical integra-
tion is straightforward. When there is a mixture of rel-
ativistic and nonrelativistic (or semirelativistic) species
with a conserved number of nonrelativistic particles, one
must substitute for g, the expression

(14)

where p"' and pN are the energy densities of relativis-
tic and nonrelativistic species, respectively. If we neglect
the energy exchange between the relativistic and non-
relativistic species the rate of the cooling would be the
same, T = —HT, and we have to solve kinetic equa-
tion (8) subject to (14). For the choice of normalization
no = 0.181Ts Eq. (14) takes the form

g, = g,"'+0.554(E)r/T (15)

with (E) being the average energy per particle for the
massive fermions. The massive neutrinos will have a
thermal distribution as long as they remain in kinetic
equilibrium, which is true down to temperatures To —2
MeV. Below this temperature the distribution function
in the phase space changes from exp( —g(m~+ p2)/T)
to exp( —g(m~/To2+ p2/T2) j. This change in the dis-
tribution function will modify the Boltzmann equation.
For large masses it is not expected that these changes will
have any significant effect. We have calculated the effect
of such changes and found them to be less the two percent
for masses above 1 MeV. For masses m ( 1 MeV, the neu-
trinos decoupled while they were still relativistic, so their
number density will not be suppressed relative to a mass-
less species. Thus in the case of m ( 1 MeV, r = 1, and
the massive neutrinos distribution in phase space is given
by exp( p/T), since —the neutrinos will decouple while
they are still relativistic. Given this distribution function
the average energy is (E) —(m +0.414rnT+3. 151T2)~~2.

This approximate expression is accurate up to 0.5%%uo and
was used in our numerical work for the case of light neu-
trinos. We should also point out that for smaller masses,
m = 1—5 MeV the Boltzmann approximation is not accu-
rate and the helium abundance will decrease by (5—10)%%uo

[13j. However, as we shall see, this will not affect our
bounds.

Exchange of energy between massless and massive par-
ticles gives rise to a faster cooling. Covariant energy con-
servation demands that

3a0 I I I I I I I

2.5—

2.0—

1.0

would not be valid since it was based on the assumption
that the massive particles were in kinetic equilibrium.

We have numerically solved kinetic Eq. (8) for g',"= 9
and g, R given by Eq. (15). This corresponds to the
case of two light neutrinos and one heavy. Note that
gNR depends on the unknown function r(T) which is de-
termined from the solution of the kinetic equation. Our
results for the freezeout number density of the massive
Majorana and Dirac tau neutrinos are presented in Fig.
1. We then calculated the n/p ratio taking into account
that r is not a constant but decreases due to annihilation
of the heavy neutrinos. Furthermore, we used the exact
expression for the average energy density of the heavy
neutrinos by integrating the distribution function.

Bounds on the neutrino mass are derived by computing
the net increase in helium production due to the presence
of the heavy neutrino species. (The bounds will be ef-
fectively independent of the value of g chosen because
the helium abundance is fairly insensitive to this param-
eter. ) In accordance with the standard nucleosynthesis
calculations almost all neutrons which survived down to
the temperature T~ = 0.065 MeV turn into 4He. It is
because of this fact that it is important to keep track
of residual massive neutrino annihilation. The fi.nal neu-
tron number density will be sensitive to the time between
when the n-p reactions freeze out and the time when deu-
terium formation begins. This interval will depend on the
energy density contribution from the heavy neutrinos.

By comparing the neutron to proton ratio calculated
for two massless neutrinos and one neutrino with mass
m . at T~ = 0.065 MeV, to the n/p ratio calculated
for a variable number of massless neutrino species at the
same temperature, we may bound the neutrino mass. If
the n/p ratio yield for a given mass m . exceeds the
ratio calculated for 3.6 massless species, then that mass

T (' 0.2r 0.14r'(q + T )H 1+— 16T i, g."'+0.42r ~ g«i + 0.42r—
00

1

I

5 10
MASS (MeV)

This is valid if p & p"' and the massive and massless
particles are in thermal contact. If this inequality did
not hold the cooling rate would be different, and Eq. (8)

FIG. 1. rm for Majorana (dashed) and Dirae (dotted) neu-
trinos. rm for Dirac neutrinos does not include the contribu-
tion from the right-handed species.
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FIG. 2. Number of equivalent massless species for Majo-
rana (dashed) and Dirac (dotted) neutrinos. The contribution
from both chirality states of the Dirac neutrino are included.

should be bigger because the (hypothetical) mass of v
is assumed to be larger than m, = 0.5 MeV. We hope
to take all these effects into account in the subsequent
publication.
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Note added. —At the time of writing, the authors
became aware of similar work done by H. Kang, M.
Kawasaki, A. Kernan, R. Sherrer, G. Steigman, and T.
Walker, which was presented at Neutrino '92 (Ohio State
Report No. OSU-TA-11/92). These authors also consider
the effects of decaying neutrinos.

is ruled out. For the case of Dirac neutrinos we assume
that the right-handed species will be populated if mD &
0.74 MeV [14]. From these considerations we find that,
assuming the neutrino lifetime is longer than 100 sec,
the following range of masses are excluded (see Fig. 2):

0.5 ( mM ( 35 MeV,

0.3 & mD & 35 MeV. (18)

Tau neutrinos with their mass in the region consid-
ered must be unstable in accordance with the Gerstein-
Zeldovich limit. For our bounds to be valid the neutrino
must not decay prior to primordial nucleosynthesis. Since
the characteristic temperature scale is near 0.1 MeV the
lifetime should be larger than or of the order of 100 sec.
For lifetimes shorter than 1 sec, there will be no bound
for Majorana neutrinos because the decay will keep the
neutrino in thermal equilibrium (this is assuming that the
neutrino decays only into particles present in the stan-
dard model). However, for Dirac neutrinos there will be
a small region of excluded masses near 1 MeV, as the
contribution to the energy density from such a neutrino
will be twice that of a massless Weyl species.

One could deduce bounds on both m and on ~ ac-
counting for the decay of v in the kinetic equation gov-
erning both the number density of v and the n/p ratio.
The final n/p ratio depends not only the lifetime of v
but also on the type of particles in the Anal state. A con-
siderable effect associated with the decay might emerge
from the distortion of the electron neutrino spectrum if
there is a decay into v, . This is analogous to the dis-
tortion of the spectrum of the electron neutrinos due to
electron-positron annihilation in the standard scenario
at the level about I'%%uo found recently [15,16]. The size of
the effect in the case of massive v annihilation or decay
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