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We consider an exactly solvable random matrix model related to the random transfer matrix model
for disordered conductors. In the conventional random matrix models the spacing distribution of nearest
neighbor eigenvalues, when expressed in units of average spacing, has a universal behavior known gen-
erally as the Wigner distribution. In contrast, our model has a single parameter, as a function of which
the spacing distribution crosses over from a Wigner to a distribution which is increasingly more Poisson-
like, a feature common to a wide variety of physical systems including disorder and chaos.

PACS numbers: 05.40.+j, 05.45.+b, 71.30.+h, 72.10.Bg

Random matrices have been used to describe a variety
of physical systems including complex nuclei [1], chaotic
systems [2], and disordered mesoscopic conductors [3].
The connection among these very different systems is not
clear, but a random matrix approach in each case is
based on the assumption that a sufficiently complicated
system is better described by a matrix which is as random
as possible, subject to certain symmetry requirements
(like the Hermiticity of a Hamiltonian or the unitarity of
a scattering matrix). The local statistical properties of
the characteristic levels of the system are then similar to
certain well-known universal properties of the distribution
of eigenvalues obtained from the theory of random ma-
trices [4] developed initially by Wigner, Dyson, Mehta,
and others for energy levels of complex nuclei. Although
there are a variety of possible random matrix ensembles,
they all belong to one of three different classes depending
on symmetry (orthogonal, unitary, and symplectic), and
all of them have some common universal features. Most
well known is the result that the probability distribution
of the spacing between nearest neighbor eigenvalues in
the bulk of the spectrum, expressed in terms of the local
average spacing, follows a universal curve [4] known gen-
erally as the Wigner distribution. The actual power law
with which the distribution goes to zero for zero spacing
(showing “level repulsion” characteristic of such systems)
and the asymptotics [5] depend on the symmetry and are
therefore different for the three different classes of ran-

dom matrices, but all of them have the same qualitative
shape, and are independent of any parameter of the sys-
tem, once properly scaled.

This means that all systems describable by these ran-
dom matrices will always have the universal properties
associated with such matrices. For example, for disor-
dered mesoscopic conductors, the universality of the spac-
ing distribution manifests itself as the universal conduc-
tance fluctuation known to exist in these systems in the
metallic regime [6]. On the other hand, it is well known
that for sufficiently strong disorder, there is a transition
from metal to insulator, and the conductance fluctuation
in the insulating regime is expected to be very different
from the universal behavior in the metallic regime [7,8].
Similarly, a chaotic (nonintegrable) system exhibiting
level repulsion may undergo a transition to a nonchaotic
(integrable) regime as a function of some parameter, and
the nonchaotic regime does not show level repulsion
characteristic of the universal Wigner distribution [9]. It
is therefore of great interest to see if any physically
relevant as well as analytically tractable random matrix
model can incorporate deviations from the universal
Wigner distribution. In the present work we will consider
a one-parameter model which is qualitatively similar to
the transfer matrix models proposed for disordered con-
ductors, and is exactly solvable. We will show that the
model indeed shows a transition from a highly correlated
Wigner to an uncorrelated Poisson-like level spacing dis-
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tribution as a function of the parameter.

To illustrate the general framework, consider a physi-
cal system described by an N X N matrix X with eigenval-
ues x; (a=x;<b, i=0,...,N—1). Within a max-
imum entropy ansatz [3], the ensemble of all random X
matrices consistent with given symmetries (Hermiticity,
time reversal, etc.) subject to some physical constraint
(e.g., given average density of eigenvalues) has a distribu-
tion of eigenvalues that can be written quite generally in
the form (3]

N—1 N—1
Pixo, ..., xn=t3= T1 lxm—xal® IT exp[—V(x)].
m<n,0 k=0

(1)

Here a is a symmetry parameter and is equal to 1, 2, or 4
for orthogonal, unitary, and symplectic symmetries [4],
respectively. For simplicity we will consider @ =2 only,
which corresponds to the case where time reversal sym-
metry is broken (e.g., due to the presence of a magnetic
field). One can define an effective “Hamiltonian” H of
the eigenvalues by P=exp(—aH), consisting of a two-
particle “interaction” term which is logarithmically
repulsive, and a single-particle *“potential” term V(x),
which serves to confine the eigenvalues. While the two-
particle interaction term is determined by symmetry con-
siderations alone, and is independent of any model pa-
rameter, different models within the same symmetry
classification correspond to choosing different forms for
the single-particle potential ¥ (keeping the interacting
part the same) which can be thought of as a Lagrange
multiplier function that fixes, e.g., the eigenvalue density
(corresponding, e.g., to a given mean value of conduc-
tance in the case of a disordered system). In general,
given an explicit form for V, it is possible in principle to
calculate any n-point correlation function for this distri-
bution exactly for any given NN, based on the use of or-
thogonal polynomials [4]. One defines a family of or-
thogonal polynomials P,(x), with given weight ¥'(x) such
that

b
S dxe VPP, (0P (x) =6 mha . @)
A two-point kernel Ky (x,y) is defined as

N—1

Kn(x,y) =e “VO+V(l2 ¥ LP,,(Jc)P,,(y). 3)
n=0 hn

The eigenvalue density and the spacing distribution can

then be calculated in terms of this kernel. For transla-

tionally invariant kernels the spacing ¢ between nearest

eigenvalues, in units of average local spacing, for large N,

has the spacing distribution p(¢) given by [4]

d2E (1)

p(t)= 2 , E()=det(1—-K,), 4)

where K, is the kernel divided by the local density and re-
stricted to an interval of length ¢.

So far all the random matrix models investigated
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analytically in detail have led to the same universal re-
sults, and have employed choices for the potential such
that the associated polynomials are one of the classical
orthogonal polynomials. On the other hand, all random
transfer matrix models proposed for disordered conduc-
tors that can describe both the metallic and the insulating
regions [3,10,11] require a potential ¥ (x) which behaves
as (Inx)? for large x and cannot be associated with any
classical orthogonal polynomial. For example, Ref. [11]
has extracted the functional form of the potential [for the
matrix X =TT +(TT") ' =21, where T is the transfer
matrix characterizing the disordered conductor and 7 is
the unit matrix; the conductance g is given in terms of the
eigenvalues of X by g=X/L,1/(1+x;)] by considering
numerical diagonalization of the transfer matrix obtained
either directly from a microscopic tight binding Anderson
Hamiltonian with random site energies or from a network
of disordered quantum wires, for various values of disor-
der. The discrete points in Fig. 1 reproduce the V(x)
from Ref. [11] which, as noticed in that reference, can
be fitted very well with a function of the form alln(i
+bx)12%, where a and b are constants depending on disor-
der, etc. The two-point correlation functions obtained
from these potentials fit very well [11] the two-point
functions in the bulk directly obtained numerically from
the microscopic model, showing that such a form for the
potential can be taken as a qualitatively correct phenome-
nological model for disordered conductors. Note that this
potential has the same qualitative behavior as in the mod-
el discussed in detail in Ref. [3], where the single-particle
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FIG. 1. The single-particle potential V'(x). The discrete

points are from Ref. [11], obtained from numerical solutions of
either a microscopic tight binding Anderson Hamiltonian with
random site energies, or from a network of disordered quantum
wires, for various values of disorder. The disorder is weakest for
the squares, and strongest for the diamonds. The solid lines are
from the potential (5) in the text, for §=2.30, 9.04, and 27.07
chosen to fit the squares, triangles, and diamonds, respectively.
The general agreement shows that the model defined by (5) de-
scribes a qualitatively appropriate phenomenological model for
disordered conductors, with B increasing with increasing disor-
der.
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potential ¥ was taken to be a simple quadratic v? in the
variable v, in which the density of eigenvalues is uniform;
in this variable the two-particle repulsion term turns out
to be of the form |coshv,~—coshvj[“. However, in the
variable x = ¥ (coshv— 1) where the interaction term be-
comes of the standard form ]xi—xj|“, the potential has
the characteristic (Inx)? behavior for large x. It is there-
fore important to explore whether the spectral statistics
of a model with this particular large x behavior of the po-
tential (the statistics turns out to be insensitive to the
particular power law at small x) shows any deviation
from the Wigner statistics, as expected for disordered sys-
tems. In the present work we consider a model which we
show to be qualitatively similar, containing a single pa-
rameter, and exactly solvable. We then show that indeed
such a potential gives rise to transition from the universal
Wigner distribution to a Poisson-like spacing distribution,
very similar to those seen numerically for microscopic
tight binding models [8] across the metal-insulator transi-
tion.
Let us consider the potential [12]

V()= Inl14+2¢"*'cosh(2y)+¢?"*?], x =sinhy,
n=0
(5)

where the eigenvalues x are real, between — oo and + oo,
and the parameter 0 <g < 1. The general behavior of
this potential for x >0 is shown in Fig. 1 by the solid
curves, for various values of B=In(1/q) (B turns out to be
a more physical parameter, increasing with increasing
disorder). The general agreement with the shapes ob-
tained numerically from the microscopic models (shown
by discrete points in the same figure) shows that the po-
tential of Eq. (5) indeed defines at least a qualitatively
correct [13] phenomenological model for disordered con-
ductors [3,10,11], with the parameter B related to disor-
der. The advantage of this apparently more complicated
model over the alln(1+bx)]? potential is that it contains
a single parameter, and is exactly solvable because the as-
sociated orthogonal polynomials defined by Eq. (2) are
explicitly known. They are the so-called ¢ Hermite poly-
nomials [14] [in the variable sinh(x)]. The asymptotic
form (IV— o) for the kernel in this case is given by [14]

K(x.p)=e ~W0OH+VeI2 Q(x,y:q) ,
Crp) =e [G:a)12In(1/g)

Q(x,y;q) =(—ge**V,q)(—ge ~*Viq) 6)
x (ge* ") (ge **iq) ,
where we have used the notation
(a;q) =nﬁo(l—aq"). @))

(Note that our definition of the kernel differs from Ref.
[14] by the exponential prefactor as well as normaliza-
tion, and the above polynomials are called ¢ ~! Hermite
in Ref. [14].) In order to facilitate a comparison with the
Wigner distribution, for which the average spacing be-

tween adjacent eigenvalues is unity, it is necessary to re-
scale the eigenvalues by their average spacing. This can
in general be shown to be 1/K(x,x) and in our case turns
out to be constant equal to 8. Upon rescaling of the ei-
genvalues, it is necessary to perform a corresponding nor-
malization of the kernel. Then, using the scaled variables
¢=x/B, n=y/B, and infinite product representations of
theta functions [15] o;, the kernel in Eq. (6) can be re-
written in the form

K(&,n) = Q(BL, )04, n;p)

vcosh{+v/coshn
cosh[(Z+1n)/2] °

0u(Limip) = 3, (z(C+1n);p)

04QrLp)94Qrn;p)

where the parameter p is defined as p =exp(—27%/8).
To look at the spacing distribution, we now restrict our-
selves to the region { = 7. Although the kernel in Eq. (8)
is not translationally invariant, the appropriately normal-
ized kernel in the bulk of the spectrum, except very close
to the origin, is approximately given by

N (x(&—1n)p)
sinh[(¢—7n)p/2]1 °

an)= (8)

Z(r ) B _sinlz(¢—n)] 9
KGmB) =~ bl ~mp/aT ° ©
which is translationally invariant [16]. Let us compare

Eq. (9) with the conventional random matrix result
[4,17]

Ko(&,n) =sinlz(¢—n)1/=(¢—n) (10)
valid in the bulk of the spectrum. Here ¢ and n are the
corresponding scaled variables, so that the average spac-
ing is unity. Note that K has no explicit dependence on
any parameter once the eigenvalues have been expressed
in units of average spacing. This is the source of univer-
sality in the corresponding spacing distribution p(z),
which is given by the well-known *“Wigner” or more
specifically for our unitary model the “GUE” (Gaussian
unitary ensemble) distribution.

The spacing distribution p(¢) for the GUE increases
quadratically for small spacing ¢, has a peak at t = 1, and
decreases exponentially for large ¢ with an exponent
which is also quadratic in ¢ (see GUE curve in Fig. 2).
Our kernel K(¢,m;8) reduces to Ko(¢£,n) in the limit
B— 0 and therefore recovers all the GUE results in this
limit. For finite B, and for spacings |{—n|<71<1/
(note that the kernel is restricted to an interval 1), the hy-
perbolic function can still be expanded, B scales away and
we get back Eq. (10), and the universal GUE behavior
for t— 0, namely, p(¢) <12 follows. However, there is
now a rather large region where the spacing can be of the
order unity but at the same time much larger than 1/8
for large enough B. In this regime the parameter B can-
not be scaled away, and the spacing distribution obtained
from it becomes sensitive to the cutoff provided by the
hyperbolic function. Thus we expect that the peak is
shifted from ¢t =1 to ¢t « 1/B. In Fig. 2 we show the spac-
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FIG. 2. The spacing distribution p(z) as a function of the
spacing ¢ between nearest eigenvalues for various values of the
parameter . For comparison, the universal GUE distribution,
which coincides with the 8 =0 curve, and the Poisson (exponen-
tial) distribution are also included.

ing distribution for nearest neighbor eigenvalues obtained
from a numerical evaluation of the determinant in Eq.
(4) using the approximate kernel of Eq. (9), for various
values of B, which interpolates between a Wigner distri-
bution (8— 0) and a distribution which becomes increas-
ingly more Poisson-like (see Fig. 2) with increasing S,
i.e., increasing disorder. This is precisely the transition
seen in numerical simulations of finite disordered systems
going through a metal-insulator transition [8]. (In fact
comparing with results of Ref. [10], we can identify B
with the ratio of system size and localization length in the
insulating side.) A similar transition is also seen in simu-
lations describing onset of chaos [9], and it would be in-
teresting to see if such a natural connection exists there
as well.

In this calculation we restricted ourselves for simplicity
to the case of unitary ensembles only. We expect similar
deviations for the orthogonal and symplectic cases also.
More importantly we chose a particular potential related
to the ¢ Hermite as opposed to, e.g., g Laguerre polyno-
mials [18] considered in Ref. [10], which has a different
range of eigenvalues. However, the transition from a
Wigner to a Poisson-like distribution is a consequence of
the large x behavior of the potential. Since the physical
motivation for the introduction of the new family came
mainly from the region of large x, and g Laguerre and g
Hermite polynomials (and the associated potentials)
share the same asymptotic behavior, we expect that the
family of g polynomials in general [19] would describe
matrix ensembles with similar spectral properties.

In summary, we found that the appropriate random
matrix model for disordered conductors belongs at least
qualitatively to a new family of random matrices. The
nearest neighbor spacing distribution for the eigenvalues
of these matrices does not follow the universal Wigner
form associated with the conventional random matrix
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models. Instead, the spacing distribution shows a transi-
tion from the highly correlated Wigner to an uncorrelated
Poisson form with increasing disorder, as seen in numeri-
cal solutions of microscopic models. We note that similar
transitions also occur in dynamical systems near the
regular-chaotic transition.
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