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Realization of a Spin Liquid in a Two Dimensional Quantum Antiferromagnet
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The ground state properties of the two dimensional spatially anisotropic Heisenberg model are
investigated by use of field theory mappings, spin-wave expansion, and. Lanczos technique. Evidence
for a disorder transition induced by anisotropy at about J„/J ( 0.1 is shown. We argue that
the disordered phase is gapless and its long wavelength properties can be interpreted in terms of
decoupled one dimensional chains.
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The search for disordered (spin liquid) ground states
in two dimensional (2D) electronic models has been pur-
sued since the seminal work of Fazekas and Anderson [1]
on quantum antiferromagnets (QAF) in frustrating lat-
tices. This problem has been revived in the last few years
due to the resonating valence bond conjecture [2], which
stimulated much numerical work on the subject. Despite
considerable effort, the existing evidence in favor of a spin
liquid in 2D frustrated QAF is weak at best [3,4], with
the single exception of the kagome QAF where a disor-
dered ground state is plausible [5], even if the presence
of nonconventional magnetic order is still a possibility.

In this Letter, we present analytical as well as nu-
merical evidence supporting an order-disorder transition
in the square lattice S = 1/2 QAF driven by spatial
anisotropy in the nearest neighbor coupling. This model
does not introduce frustration and therefore presents sev-
eral advantages with respect to the previously investi-
gated systems, the most important being the absence
of any plausible order parameter competing with the
Neel staggered magnetization m = pRSR exp(Q R)
[Q = (7r, 7r)]. The model is defined by the Hamiltonian

J ) [SR ' SR+X + ol SR ' SR+y] ~

where SR are spin 1/2 operators living on a square lat-
tice, x and y are unit vectors, J ) 0, and n & 1. The
isotropic limit (n = 1) has been extensively studied by
exact diagonalizations [6] and quantum Monte Carlo [7,8]
with the resulting evidence of a finite staggered mag-
netization in the thermodynamic limit [8] m 0.3075,
quite close to the spin-wave theory (SWT) estimate m =
0.3034 [9]. Physically, the strongly anisotropic model (1)
describes a system of weakly coupled AF chains whose
study has attracted considerable interest among theoreti-
cians and experimentalists in view of the possibility to
observe the peculiar features of one dimensional physics
[10].

The presence of an order-disorder transition in model
(1) has been conjectured by several authors [11,12] and

can be motivated by the standard mapping of the 2D
quantum model (1) into the (2+1) dimensional O(3) non-
linear sigma model (NLcrM) defined by the action

S = 2i dx dy dt T (8 n) + T„(B„n) + yo(Btn)

(2)

where n is a unit vector. The lowest order estimates
of the parameters give T = J/4, T„= n 1/4, yo
4a2 J(1 + a) where a is the lattice spacing. Two limits
of the action (2) can be easily analyzed: The isotropic
model is known to be ordered for the physically rele-
vant parameters [13], while the o, ~ 0 limit of the ac-
tion (2) correctly describes a stack of uncoupled (1+1)
dimensional models which are disordered at any finite
"temperature" g = (T~yoa ) /2 owing to the Mermin
Wagner theorem. Most interestingly, the order-disorder
transition occurs at a finite value of the spatial anisotropy
and belongs to the universality class of the classical three
dimensional Heisenberg model.

Similar conclusions can be drawn directly from SWT
on the quantum Hamiltonian (1). In fact, the 1/S ex-
pansion of the staggered magnetization can be straight-
forwardly generalized to anisotropic models and predicts
a breakdown of Neel order at about n, 0.03 (0.07) at
first (second) order in 1/2S. The increase of the critical
anisotropy parameter o;, in going from first to second or-
der gives confidence about the actual occurrence of the
transition, which is in fact enhanced by quantum Quctua-
tions. Therefore, on the basis of the field theory mapping
and SWT, we expect that by lowering the anisotropy
parameter a a disordered phase sets in within a finite
interval n, ) o. ) 0. This prediction should be qualita-
tively correct because field theory methods are known to
reproduce the physics of QAF both in the isotropic two
dimensional limit [13] and in the one dimensional (n = 0)
case, provided the topological term is included in (2) [14].

In order to test the theoretical predictions on the model

(1) and to determine the properties of the two dimen-
sional spin liquid state, we have performed Lanczos diag-
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singlet, in agreement with a conjecture put forward by
Haldane [14].

However, the possibility of a gapless phase contrasts
with the commonly accepted phase diagram of the model
(1) defined on two chains [18,19], where a gap A(a, ) is be-
lieved to open at every finite value of the anisotropy pa-
rameter o, . The disordered phase in the two chain model
is in fact continuously connected with the o, —+ oo limit
where the gap is interpreted as the effect of the finite size
of the lattice along the y direction. The same result ac-
tually holds for every even number of chains while an odd
chain model remains gapless all the way to the a, —+ oo
limit. Therefore it is not too surprising that the Hamilto-
nian (1) on square clusters preserves the peculiarities of
the odd chain sequence and does not open a gap at any
a. In finite clusters, however, a gap is always present and
we must investigate whether it disappears in the thermo-
dynamic limit. We have analyzed the finite size scaling
of the gap in the case of two chains (L x 2), three chains
(L x 3) with antiperiodic boundary conditions along the
y direction, and for square clusters. For any a. the lowest
excited state is always a triplet but its size dependence is
quite different in the three cases. In order to see whether
a gap is present in the strong anisotropic region we as-
sumed that, for n ~ 0 and L ~ oo, the gap A(L, a) can
be expressed in a scaling form, as usual near a critical
point,

0 (L, a.) = 6(L, O) F[nL(log L)i 2], (4)

where the one dimensional gap A(L, 0) is known to scale
as 1/L. The specific form (4) has been chosen in order
to match with first order perturbation theory in o; and
does not depend on the number of chains of our lattice.
However, the scaling function F(x) behaves quite differ-
ently in the three geometries, as can be seen in Fig. 3.
The correctness of our scaling form (4) can be inferred by
the collapse of the finite size numerical data on a smooth
curve in all cases, provided o, is suKciently small. Finite
size effects reflect in the nonuniversal departure of the
numerical data from the universal curve F(x). The ther-
modynamic limit at fixed (small) a. corresponds to the
large x region of the scaling curve which is not directly
accessible from finite size data and should be extrapo-
lated from the numerical results of Fig. 3. In the two
chain model F(z) clearly goes through a minimum and
then grows, suggesting a linear asymptotic behavior at
large x which implies a finite gap of order Ja. at small
a., in agreement with field theoretical analysis [18]. The
comparison between the three chains, where a gapless
phase is expected, and the square clusters shows a strong
resemblance between the two cases: The scaling function
is always monotonic supporting the absence of a gap.

In order to understand how a disordered gapless phase
may appear in 2D it is useful to consider other physical
quantities like the spin-wave velocity and the momen-
tum dependence of the magnetic structure factor. Again,
SWT provides a valuable help in the interpretation of the
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FIG. 3. Diagonalization data of the gap scaling function
[see Eq. (4)] for the two chain model, three chains, and square
clusters. For the two and three chains, open triangles refer to
L = 4, full triangles L = 6, open squares L = 8, full squares
L = 10, and open circles L = 12. For the square clusters open
triangles correspond to 8 sites, full triangles to 18 sites, open
squares to 32 sites, and stars to the 4 x 4 cluster.

= aZ(n), Z(a) = 1 — C(n),
(col' 1

(c ) ' 2S
1 I (cos k —cos k„)(cos k + a. cos k„)

C(a) =-
g(1 + n)z —(cosk + a;cask„)z

(5)

In fact, while at lowest order the spin velocity ratio co-
incides with the anisotropy parameter, the one loop cal-
culation always reduces the Z(n) factor. Obviously, the
correction C(n) vanishes at the isotropic point a; = 1 but
diverges logarithmically in the a —+ 0 limit. Therefore,
SWT suggests the occurrence of a decoupling transition
at a finite value of n signaled by Z(a, ) = 0. The same
anisotropy renormalization factor Z(a) governs the long
wavelength behavior of the physical correlation functions.
In particular, the magnetic structure factor behaves as

S(k, k„) oc k2+ nZ(a)kz. (6)

In order to verify these predictions we tested Eq. (6)
against Lanczos diagonalizations in the 32 site lattice.
The results are shown in Fig. 4 together with the zero
and one-loop SWT results for the spin velocity ratio in
the thermodynamic limit. The numerical data are in
good agreement with the spin-wave results in the 32 site
lattice, and show an even larger effect. Therefore we are
led to conclude that at long wavelengths a decoupling

numerical results. The spin velocity is almost constant
at all anisotropies ranging between the one dimensional
value c~ = ir/2 and the isotropic limit [8] c~ 1.56 which
are both reproduced within 10' by second order SWT
generalized to anisotropic models. A surprising result of
SWT is the enhancement of the anisotropy in the spin
velocity ratio induced by quantum fiuctuations:
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FIG. 4. Square of the spin velocity ratio vs anisotropy. The
dashed line is the leading SWT result; the continuous line in-
cludes the one loop correction in the thermodynamic limit.
Finite size estimates on a 32 site lattice for nZ(o. ) are ob-
tained by exact diagonalization (full triangles) and second
order finite size SWT [17] (open triangles).

FIG. 5. Phase diagram of the spatially anisotropic Heisen-
berg model obtained via one-loop SWT. The order parameter
vanishes along the continuous line and the spin-wave velocity
ratio along the dashed line. The long dashed line indicates a
crossover transition between a decoupled phase (DP) and a
normal disordered phase with a finite spin velocity ratio.

transition may actually occur in strongly anisotropic spin
models. The phase diagram of the anisotropic model (1)
suggested by SWT is depicted in Fig. 5 for generic spin-S
systems. The transition line where the staggered magne-
tization vanishes has been calculated at the lowest order
spin-wave level together with the locus Z(a) = 0 where
we expect a "decoupling transition. " At the same order
in I/8 we have found that these two lines approximately
coincide up to a critical value of I/S beyond which the
system disorders without decoupling. For large values of
S, the transition is characterized by the vanishing of both
the staggered magnetization and the spin velocity ratio
leading to a picture of basically uncoupled chains (i.e. ,
with a finite correlation length in the y direction) with
interesting experimental consequences about the possibil-
ity to observe 1D behavior in real systems. In the upper
part of the phase diagram, the first instability (rn = 0)
drives the system towards a strong coupling disordered
phase. In this region, the further decoupling instability
predicted by SWT cannot be justified any more.

We believe that this zero temperature phase diagram is
qualitatively correct although higher order terms in the
SWT expansion (available only for the magnetization)
may quantitatively change the phase transition line. In
order to fully characterize the disordered phase, topo-
logical defects must be taken into account leading to a
possible difference between integer and half-integer spin
systems [14].
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