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A Peculiar Realization of Semimetal/Semiconductor Classes and Ferromagnetism
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Lateral superstructures with honeycomb symmetry are shown to be classified, with a simple criterion,
into semimetals with gapless k-linear dispersions, semiconductors, and metals. In some of the classes,
the symmetry enforces flat bands to exist, which implies the occurrence of ferromagnetism when the
electron correlation is turned on. These provide a unique opportunity for band structure engineering.

PACS numbers: 73.20.Dx, 75.10.Lp

Although recent advances in fabricating superlattices
or such molecules as fullerenes [1,2] have made us realize
that exotic structures provide an intriguing playing
ground for condensed-matter physics, the lateral super-
structures with superperiod along two-dimensional (2D)
directions have yet to be fully explored. A most impor-
tant question is whether there exist any unusual band-
theoretical or electron-correlation effects due to the lat-
eral superperiod, since the usually conceived effect is only
the predictable appearance of band gaps at minizone
boundaries. In this context the honeycomb symmetry is
of distinct interest, since one can ask how the anomalous
semimetallic (k-linear) band structure in its simplest
form (graphite) will persist for superhoneycomb struc-
tures. The massless (k-linear) mode is intriguing, since
this appears in, e.g., the parity anomaly in the quantum
Hall effect [3]. In the present Letter we show that super-
structures with honeycomb symmetry are classified, with
a simple criterion, into classes which encompass all semi-
conducting, semimetallic and metallic cases. Hence the
honeycomb symmetry implies massless dispersion under a
certain condition, but not always. More remarkably,
dispersionless (flat) bands appear systematically, which
implies a ferromagnetism when the electron-electron
repulsion is considered.

An initial motivation for our looking into superhoney-
comb systems came from an organic material called azite
[unit cell =(C7N3Hg),, inset of Fig. 11 [4,5], which is
roughly a graphite sheet with periodic (~15 A) perfora-
tions (or an atomistic “antidot array”) and has been re-
ported by Chapman to be synthesized as a by-product in
an attempt to fabricate fullerene. We can also envisage
such a molecular network as a “2D zeolite”: When some
molecules such as halogens [5] are doped, the property of
the host is important in considering doped materials, with
possibly some charge transfers as in the case of graphite
intercalation compounds.

We start with the band structure of azite obtained with
discrete variational-X,-linear combination of atomic or-
bitals (DV-Xa-LCAO) method [6] assuming for simpli-
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city that all the C-C and C-N bond lengths are equal to
1.39 A, a value intermediate between the single and dou-
ble bond lengths of carbon, and the C-H to be 1.09 A.
The result (Fig. 1) shows that the system is a semicon-
ductor with a direct gap at the K point. The wave func-
tions in the highest occupied band have the character
mainly of 7 orbitals of C and N atoms.

We can in fact give a general criterion for characteriz-
ing the band structure of all the honeycomb superstruc-
tures from group-theoretical considerations, where we
concentrate on the tight-binding model to single out the =
bands. Curiously, the classification involves not only the
global symmetry but also the atomic configuration within
the unit cell.

Consider superstructures of honeycomb symmetry,
where the atomic structure within the hexagonal cell is
arbitrary with either D¢ (space group P6mm) or lower
Cs symmetry (space group P6). The honeycomb symme-
try forces us to regard the unit cell as comprising two
“superatoms,” a and B, each of which has an identical
atomic configuration with C; symmetry (see the insets of
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FIG. 1. Band structure of azite. The inset depicts the struc-

ture of azite after Ref. [5].
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TABLE 1. The case of odd numbers of 4 or E representations are marked along with the
band structure, which is semiconducting (sc), semimetallic (sm), or metallic (m).

Type Formula unit r K Bipartite Nonbipartite
Ao (Cim)a sc+n(=0) flat band(s) sc(n=0)/m
Ac (Cam+1)2 E sm+n(=0) flat band(s) sm(n=0)/m
Bo (Cim+32)2 AE AE sc+n(= 3) flat bands m
Bce (Cim+512)2 AE A sm+n(=1) flat band(s) m

Figs. 2 and 3). To be compatible with honeycomb (Cs)
symmetry, it follows that each superatom has a threefold
axis at the center and a twofold axis on the boundary.
Although the assignment of superatoms may not be
unique, we can distinguish case A in which we can make
neighboring a and B share no atoms and case B in which
they have to share an atom at the boundary.

Since there is a threefold axis at each corner of the
hexagonal cell (i.e., at the center of each superatom), the
number of atoms within each superatom is 3m in case A
and 3(m+ 1) in case B, where m is an integer. There
may be an additional atom (threefold axis) at the corner
of the hexagonal cell, so that we can further classify type
A into type Ap with no corner atoms with a unit cell
=(C1n)2 and Ac with corner atoms, (C3,,;+1)2, and type
B into type By (Citm+1/2))2 [7], and B, (Citm+1/2+1)2
Now the classification is complete.

Theorem I:. For a superhoneycomb system with one or-
bital (one = orbital for carbon) per atom, the number of
one-dimensional irreducible representations (which we
symbolically call 4) and that of two-dimensional irreduc-
ible representations (E) at the K point (with threefold
symmetry) and the I' point (with sixfold symmetry) in
the Brillouin zone (BZ) are related with the type of the
structure. Table I lists those structures with an odd num-
ber of A representations or E representations at the K
and I points.

We can prove this theorem by recombining atomic or-
bitals into ¢5,¢x,¢, With s,x,y symmetries, respectively,
for superatoms a and B (as well as for the boundary
atoms for type B) to enumerate the irreducible represen-
tations. The distinction between the cases with and
without corner atoms comes from the fact that an E rep-
resentation arises at K from the s orbital for each of those
sites, a situation specific to honeycomb systems [8].

The table shows that the number of representations is
odd for E states at the K point in a type-Ac system, etc.
If the lattice is bipartite, these odd number of 4 or E
states lie symmetrically about the orbital energy (taken
as the origin of energy), so that E and A states with E=0
must exist. Hence the n band to which the E state be-
longs forms a zero gap (with a k-linear dispersion as
confirmed from the k-p perturbation) at these points.
This implies that, for the half-filled band (with one elec-
tron per atom) for which Er =0, any type-Ac or -B¢ sys-
tem should be semimetallic. On the other hand, the =
band to which the £ =0 A state belongs in type Bg or B¢
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is completely flat in the whole BZ (see theorem II below).
The remaining type Ag is semiconducting (unless there is
an accidental degeneracy in the zone interior). Since the
k-linear mode in type A¢ becomes massive, thereby mak-
ing the system semiconducting when the corner atoms are
removed, the electronic structure is not determined by the
size and orientation of the unit cell alone unlike the situa-
tion in carbon nanotubes [9].
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FIG. 2. Band structures of a type-Ao superhoneycomb sys-
tem, (C3m)2 with m=12 (a) and a type-Ac system, (Cim+1)2
with m=8 (b). The position of EFr in the case of the half-filled
band is £=0. The insets depict the atomic structure, on which
the nearest-neighbor transfers are considered with 1= —0.3 Ry
to fit the band structure of graphite. The unit cell comprising
superatoms a and B (adjacent triangles) is indicated with
dashed lines, while we also indicate the hexagonal unit.
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Examples of type-Ag and -Ac¢ systems realized as
long-period graphites are shown in Fig. 2. There a dif-
ference between Ag and Ac is confirmed in terms of the
band folding: The K point of the original graphite is fold-
ed onto I' in type Ay, while K is folded onto K in type Ac.
The tight-binding band structure (Fig. 2), which is quali-
tatively similar to the DV-Xa-LCAO result, indeed en-
dorses the above property.

We have quantitatively probed the effect of perforation
for a series of systems with progressively larger holes with
the size of the unit cell kept constant. The gap in type Ag
is a sensitive (roughly increasing) function of the size of
the hole, while the k-linear dispersion in type A¢ becomes
flatter.

The completely flat bands have the following property:

Theorem II: For the tight-binding model on the bi-
partite lattice, there exist in general flat band(s) at £ =0
(=Er) whose degeneracy is 6/ (/=0 is an integer) for
type Ag,6/ =2 (Ac),6/ =3 (By), or 6/ =1 (B¢), with
type-Ag or -A¢ systems excepted.

Here the primed type A denotes the case in which the
superatoms a and B have the interchanged bipartite sub-
lattices (which never occurs in type B). The number of
flat bands coincides with the difference, n, —n,, in the
numbers of a and b sublattice sites within a unit cell, and
this is in fact a realization in honeycomb systems of
Lieb’s theorem [10], which asserts that the tight-binding
band in a bipartite lattice must contain (n, —n,) flat
bands at £=0. Thus the honeycomb symmetry dictates
the structure of both flat and dispersive bands in that a
type-Bo system has at least threefold degenerate flat
bands (i.e., both the E band having E=0 at K and the 4
band are flat), while a B¢ system has at least one flat
band on top of the semimetallic bands.

Lieb was originally motivated to derive that, when the
electron-electron (short-range) repulsion is introduced,
the electron correlation makes the ground state of a half-
filled system having flat band(s) ferromagnetic with a to-
tal spin of S =N (ny —n,)/2 [10], which can be interpret-
ed as a generalized Hund’s coupling within the flat bands
[11]. Here N is the total number of unit cells. Thus the
class of superstructure considered here opens up oppor-
tunities for ferromagnetism [12].

Lieb’s theorem does not provide the wave functions in
the £ =0 flat bands or about the existence of flat bands
with E=0 [which are seen to exist in Fig. 3(a)]l. Here
the E =0 eigenfunctions, which are shown to be confined
on b sites, are typically depicted for a By system in Fig. 3
(for T; for general k point, we can only attach a phase).
There the threefold degeneracy corresponds to the rota-
tion of the amplitude by 0, 27/3, and 4x/3. There, we
can show that the “interband” matrix elements of the
repulsion (the Hubbard U) are nonzero, which we can
identify as the reason why all of the spins on the multiple
flat bands are ferromagnetically coupled [11].

When the bipartite condition is relaxed by, e.g., intro-

FIG. 3. Band structures of a type-Bo system, (C3m+3/2)2 with
m=2 (a) and a type-Bc system, (Cim+s/2)2 with m=0 (b). A
band structure of the type-Bo system for the nonbipartite case
with five-membered rings, (C3m+3/2)2 with m =4, is shown in
(c). The degeneracy of the flat bands at E =0 is three (one) for
Bo (Bc), while the flat bands become dispersive for the nonbi-
partite case. The insets depict the atoms in the hexagonal unit
cell, where an eigenstate belonging to one of the E=0 flat
bands is indicated for I' with amplitude O (open circle), *+1
(£)in (a).
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ducing odd-membered rings, the symmetry in the band
structure will be degraded, but the semiconducting prop-
erty in a type-Ag system will remain, since theorem I still
applies. Azite is a manifestation of this case (we have
checked that the tight-binding band for the azite struc-
ture with all nitrogen atoms replaced with carbon atoms
is similar to the DV-Xa result for the original azite).
Similarly, a nonbipartite Ac system will remain the k-
linear semimetal. For type-B systems or type-A systems
with flat bands, on the other hand, a relaxation of the
condition will make the flat bands dispersive, thereby
inducing a semimetal-metal (or semiconductor-metal)
transformation as confirmed in the numerical examples in
Fig. 3 [13].

There is a long history for the group-theoretical study
of the semimetallic properties of 2D graphite, notably by
Lomer [14] or by Coulson [15]. One might be tempted to
assume that the honeycomb symmetry implies semimetal-
lic bands, but the present study shows that the situation is
far richer.

We have thus unraveled an example that a lateral su-
perstructure does indeed provide an intriguing band-
structure engineering. Specifically, a systematic appear-
ance of flat bands implies a spin ferromagnetism in, e.g.,
organic materials. In discussing aromatic compounds,
Kekulé structures are often evoked. We notice that the
condition for the existence of flat bands here is a
sufficient condition for the absence of Kekulé structures.
While the absence of Kekulé structures for finite mole-
cules sometimes indicates an instability [16], the stability
of infinite 2D systems will have to be checked from total-
energy calculations. The lateral superstructures also will
be interesting in terms of the orbital magnetism [17,18]
or the superconductivity [19]. If we apply magnetic field,
a broken time-reversal symmetry will cause a splitting of
the degeneracy of the F representations, along with the
quantum Hall effect and the Hofstadter butterfly for
honeycomb systems [20].
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