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Resonant Tunneling between Quantum Hall Edge States
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Resonant tunneling between fractional quantum Hall edge states is studied in the Luttinger liquid
picture. For the v = 1/3 Laughlin parent state, the resonance line shape is a universal function
whose width scales to zero at zero temperature. Extensive quantum Monte Carlo simulations are
presented for v = 1/3 which confirm this picture and provide a parameter-free prediction for the
line shape.
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It has been understood theoretically for over 30 years
that an interacting one-dimensional electron gas should
exhibit a novel non-Fermi-liquid phase, recently termed a
"Luttinger liquid. " Nevertheless, to date there has been
scant, if any, clear experimental evidence for Luttinger
liquid behavior. However, with the recent realization
that the edge states in the fractional quantum Hall efFect
are Luttinger liquids [1], the time is finally ripe for direct
confrontation with experiment. In this paper, in addition
to describing the surprising universal scaling behavior ex-
pected for tunneling resonances in a Luttinger liquid, we
calculate explicitly the universal resonance line shape ap-
propriate for tunneling between v = 1/3 quantum Hall
edges. A comparison of this universal line shape with
experiment should provide strong evidence for Luttinger
liquid behavior. Indeed, recent experiments by Webb
and Milliken [2] on transport in a constricted v = 1/3
quantum Hall device find resonances which scale nicely
and have a line shape which agrees quite well with our
calculation.

In a beautiful series of articles, Wen [1] has shown that
the gapless edge excitations of a fractional quantum Hall
Buid are "chiral" Luttinger liquids. In contrast to the
electrons in real one dimensional wires, which can be
backscattered and localized by extraneous impurities, the
electrons in a chiral Luttinger liquid move only in one di-
rection, so that localization is completely unimportant.
Backscattering can, however, occur in the vicinity of a
point contact, and the Luttinger liquid correlations play
a crucial role in determining the nature of tunneling and
resonant tunneling between edges at low temperatures.
This can be tested in an experiment which consists of
measuring the two-terminal source-drain [3] conductance
of the device shown in Fig. 1 as a function of a gate
voltage which pinches ofF the channel, forming a point
contact. When the point contact is wide, the conduc-
tance will be given by the quantized Hall conductance
G = ve /h. As the channel is pinched ofF, the conduc-
tance will tend to decrease. However, there will typically
be resonant transmissions at particular values of the gate
voltage due to tunneling through localized states in the

vicinity of the point contact. We show below that as
the temperature is lowered below the bulk gap, these
resonances should become sharper and have a univer-
sal shape. We present the results of extensive quantum
Monte Carlo simulations which give the universal line
shape expected for such resonances for the v = 1/3 state.

Recently, two of us have studied the problem of reso-
nant tunneling in an interacting 1D electron gas—a Lut-
tinger liquid [4,5]. A renormalization group (RG) analy-
sis reveals that the resonance line shape at low temper-
atures is universal, depending only on the two-terminal
conductance, G = ge2/h, of the Luttinger liquid. The pa-
rameter g depends in a complicated way on the strength
of the interactions between left- and right-moving elec-
trons. However, in a quantum Hall edge state the elec-
trons move only in one direction. Most strikingly, in
this case g is a topological invariant controlled by the
quantum Hall state in the bulk [1]. To see this, consider
raising the chemical potential of the right movers relative
to that of the left by an amount bp, . This corresponds
to applying a Hall voltage VH = bp/e and the result-
ing current is given by the quantized Hall coefficient as
I = v(e2/h)VH. This immediately establishes the uni-
versal result within a given Hall plateau: g = v. This re-
markable fact makes the resonance line shape completely
universal, model independent, and fully determined (up
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FIG. 1. Four-terminal Hall bar geometry with a narrow
constriction between the source (8) and drain (D) formed by
a lithographically patterned gate (G). The dotted lines repre-
sent two parallel tunneling paths for quasiparticles. Precisely
on resonance, there is perfect edge transmission between the
source and the drain, as indicated by the arrows. Away from
resonance the edge channels are rejected at low temperatures.
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to an overall temperature scale) . The fractional quan-
tum Hall regime (g & 1) is thus a far more promising
place to observe pure Luttinger liquid behavior than in
a single-channel quantum wire, where it is diKcult to
eliminate disorder and where the value of g is unknown.
Chamon and Wen [6] have recently considered a theory
of resonant tunneling between quantum Hall edge states
which is valid in the limit in which the peak conduc-
tances of the resonances are much less than ez/h, or in
the tails of a stronger resonance. A similar theory for
resonant tunneling in a Luttinger liquid has been devel-
oped by Furusaki and Nagaosa [7]. In contrast, the scal-
ing theory presented below is valid over the entire width
of the resonance for resonances whose peak conductance
approaches the "perfect" value ve2/h.

The analog of a weak impurity that causes back-
scattering in a 1D wire is a narrow constriction which
brings the left and right movers close enough together
to communicate via tunneling of Laughlin quasiparticles
through a "weak link" as illustrated in Fig. 1. The analog
of the two-impurity resonance geometry in a 1D wire con-
sidered by Kane and Fisher [5] would be two nearby, sym-
metric tunneling paths for quasiparticles [8]. For some
value of magnetic field or gate voltage one will (randomly
or intentionally) achieve the condition of destructive in-
terference [9] which shuts off the interedge quasiparticle
tunneling. This is the resonance (no backscattering) con-
dition which will be manifested experimentally by the
appearance of a two-terminal source-drain conductance
[3] which peaks at a value that at low temperatures ap-
proaches the quantized value, G = ve2/h. Away from
resonance the quasiparticle tunneling causes current to
leak from one edge to the other, thereby reducing the
source-to-drain conductance (see Fig. 1). In fact, in the
fractional quantum Hall effect the quasiparticle tunneling
is expected to diverge upon cooling, driving the source-
to-drain conductance all the way to zero in the zero tem-
perature limit. At finite temperatures, this crossover is
described by a universal scaling function, which we cal-
culate below for g = 1/3 using quantum Monte Carlo
simulations.

We begin our analysis by briefIy reviewing the logic
behind Wen's edge state theory. For simplicity we focus
here on the primary Hall states with inverse filling factor
v ~ equal to an odd integer. In this case the edge state
has only one branch.

Conservation of electron three-current j„permits us to
introduce a fictitious gauge field a„via

1
jp, = &pvAvaA

27r

The bulk 2D electron gas is in an incompressible quantum
Hall. state with an excitation gap, which means that the
low-energy, long-length-scale physics must be described
by a massive theory. In (2+1)D the only massive gauge
theory is the Chem-Simons theory which has (Euclidean)

action [10] (ignoring irrelevant terms)

~bulk = 4' v
Gp, 8~ay Ep~p G x G7 .2

(2)

The coeKcient v is uniquely fixed by the quantized
Hall conductivity and specifies the number of zeros bound
to the electrons in the Laughlin wave function [11—13].

Since the bulk is incompressible, the only low-lying
excitations are distortions of the boundary shape which
preserve the area of the incompressible liquid. Wen has
shown that in the presence of a boundary, say at y = 0,
an effective action for the edge state can be obtained as
follows [1]:First integrate out a in the bulk, which gives
an incompressibility constraint on the electron density,
e,~ B,a~ = 0. Then solve the constraint in terms of a
scalar field, a~ = c)zP. After an integration by parts the
final Euclidean action for the edge state takes the form

1
~edge =

47rg
dX d7 (0~$)(487.$ + vB~Q).

@(x) exp 2' i )dz '0( )/g

A "vortex" or Laughlin quasiparticle at the edge is cre-
ated simply by e'&~*~, which carries fractional charge ge.

Here v is the velocity of the edge excitation, which is
nonuniversal, and will depend on the details of the edge
confining potential and the Coulomb interaction at the
edge. The dimensionless parameter g, on the other hand,
is universal and depends only on the quantum Hall state,
~g~

= v. As emphasized by Wen the requirement that the
Hamiltonian associated with Eq. (2) be bounded below
requires that v/g be positive.

This analysis neglects two principal effects of a long
range Coulomb interaction, which have two principal ef-
fects. The first is a spreading away from the edges of
the transport current carried by the condensate. This is
unimportant because, as discussed below, it is only the
total integrated current across the Hall bar and not the
detailed spatial distribution which enters the final model
[(Eq. (7)]. The second effect of the long range Coulomb
interaction is to modify the dispersion and coupling of
the two chiral modes. The latter is expected to be rele-
vant, but only at very low temperatures (roughly T & 10
mK for a Hall bar of length 100 pm and width 1 pm)
[1,14].

It follows from Eq. (1) that the one-dimensional elec-
tron density along the edge, p(x), is given by p = cl P/27r.
An expression for the electron creation operator at the
edge can be obtained by combining this with the fact
that the momentum operator conjugate to P is II~ = p/g.
Since adding an extra electron to the edge is equivalent
to creating an "instanton" in P, in which P changes by
2' in the region near x, the electron creation operator at
the edge is simply
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We now suppose that the right-moving and left-moving
edges are coupled via a tunneling term, say at x = 0. The
total action will then have the form SI, [gl, ] + SIt [P~] +
V(PL„PR). Lacking a specific model we cannot say
whether quasiparticles or electrons will tunnel more eas-
ily. Presumably the fractionally charged quasiparticles
see a lower barrier, but the matrix elements may com-
pensate. Instead, we write down the most general form
allowed by symmetry. Taking the weak link region to be
at 2: = 0, we have

V = ) v exp jim[Pl. (x = 0) —P~(x = 0)]) + c.c.,

m=1

where the v~ are (complex) tunneling amplitudes. The
term m = 1 represents the combined amplitudes for a
quasielectron to tunnel from one edge to the other or
a quasihole to tunnel in the opposite direction. These
physically distinct processes lead to the same final state
and hence add coherently to produce vi. The term m =
1/g corresponds to electron tunneling. We have no a
priori knowledge of the v~. Fortunately, for g = 1/3,
all terms except vi are irrelevant, having a negative RG
eigenvalue, 1—gm [5]. Thus at low enough temperatures
(T « 4, where A 1 K is the bulk excitation gap) and
small enough vq, the irrelevant variables v~, m & 1 will
fiow to zero before v, ir vi/T g has grown large. Thus
the RG flow will follow a universal trajectory away from
the resonance fixed point (vi = 0) into the insulating
fixed point.

At finite temperature the renormalization group flows
will be cut off, and the system will end up somewhere
along that universal trajectory. From this it follows that
in the limit of low temperature, the conductance as a
function of the resonance tuning parameter 6 lvil and
the temperature will obey the scaling form

G(T, 6) = Gg(cb/T' g). (6)
The scaling function Gg(A ) is universat in the sense that
it does not depend on microscopic details, but is a prop-
erty of the universal trajectory connecting the two fixed
points. Since g = v in the quantum Hall effect, G~ is com-
pletely determined by the theory. The parameter c is a
nonuniversal dimensionful factor which sets the tempera-
ture scale. Demanding that the scaling form (6) matches
onto the off-resonance conductance, which vanishes as
G(T) T2/g 2, implies that the tails of the scaling func-
tion should decay like A /~, or X' for g = 1/3.

Note that since 6 lvil and vi has both a real and
an imaginary part, in general it will be necessary to tune
two parameters to achieve resonance, 6 = 0. However,
if the two quasiparticle tunneling paths in Fig. 1 have
equal amplitude, then v~ can be driven to zero with only
a single parameter, such as the gate voltage. Varying
the B field within the range of the v = 1/3 plateau can
provide a second control parameter.

Though the general properties of the scaling function,
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FIG. 2. Log-log plot comparing resonance scaling function

for g = 1/2 obtained by Monte Carlo simulation for two dif-
ferent temperatures (squares and hexagons) and the exact so-
lution (solid line). The dashed line is the asymptotic behavior
predicted to decay as X

such as the temperature dependence of the width and
the exponent in the tails, are known the detailed shape
of the scaling function has been calculated analytically [5]
only for g = 1/2. This problem is idealy suited to Monte
Carlo simulation, and we have explicitly computed G(A ),
verified the predicted scaling behavior, and determined
the entire scaling function for v = 1/3. Following Ref.
[5] we note that the action is Gaussian in P(x) for x g 0
and so we integrate out all degrees of freedom except
P(~) = Pl. (x = O, r) —P~(x = 0, ~). This gives the
action

p
S = ) l~„llew(~„)l + vi d~cosP(~),

o

where we have retained only the single relevant operator.
The total current integrated across the Hall bar I at x =
0 is given simply by I = eP/2'. The finite frequency
"two-terminal" conductance then follows from the Kubo
formula,

2

G(~ ) =
2 Zl~ l(14(~ )I').

A hard cutoff A is introduced by keeping only a finite
number of Matsubara frequencies I (typically L & 100).
We also simulated a dual version of the model in which
the tunneling events are represented by a plasma of log-
arithmically interacting "charges" [5]. Essentially identi-
cal results were obtained in the two approaches.

In order to extract information about the temperature
dependence of the dc conductance, analytic continuation
to zero frequency is necessary. Though difficult to do ex-
actly, this may be done with sufIicient accuracy by fitting
the finite Matsubara frequency data to a rational func-
tion [2/3] Pade form in order to extrapolate to cu = 0.
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branch of edge states [1,15], which complicates the anal-
ysis. Resonant tunneling between hierarchical edges will
be considered in a subsequent paper.
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FIG. 3. Log-log plot of resonance scaling function for

v = 1/3 fractional quantum Hall effect obtained by Monte
Carlo simulation for two different temperatures. The dashed
line is the asymptotic behavior predicted to decay as A
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In order to check the code and to test our analytic
continuation procedure, we compare our results to the
exact solution which is available for g = 1/2 in Fig. 2.
The solid line is the exact solution derived in Ref. [5], and
the data points correspond to Monte Carlo simulations
of G as a function of cvq/T~ & for different system sizes
corresponding to T = A/317r and T = A/4lvr. c is the
single nonuniversal parameter which is adjusted to obtain
the Gt.

In Fig. 3 we display the results of our Monte Carlo
simulation for g = 1/3. In this case the tails of the reso-
nance are predicted to decay much faster, like X . The
data clearly scale. If the coefficient c in Eq. (7) is chosen
such that the scaling function varies as G(X) = g(l —X )
for small X, this simulation allows us to determine that
for large X G(X) KX s with K = 2.6+0.2.

It should be emphasized that this scaling behavior is
to be expected for the fractional quantum Hall effect
v = 1/3, but not for the integer eff'ect v = 1 or higher-
order fractions. In the integer case the edge state is
equivalent to a noninteracting Fermi liquid, and at low
temperatures the resonances should be temperature in-
dependent and Lorentzian. For all higher-order fractions
in Laughlin's sequence, 1/v an odd integer, multiquasi-
particle backscattering processes, v~ in (5) for m ) 1,
are also relevant and grow at low temperatures. Thus
in these cases the conductance at the peak of the "res-
onance" (vq ——0) will decrease upon cooling, eventually
killing completely the resonance in the zero temperature
limit. The higher-order hierarchical quantum Hall Hu-

ids, such as v = 2/3, 2/5, 2/7, . .., have more than one
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