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Two-Dimensional Vortex Lattice Melting
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We report on a Monte Carlo study of two-dimensional Ginzburg-Landau superconductors in
a magnetic field. We find evidence suggestive of a first-order phase transition between a low-
temperature state characterized by power-law positional correlations in the superfluid density and
a high-temperature vortex-fluid state. A key aspect of our study is the introduction of a quantity
proportional to the Fourier transform of the superfluid density which can be sampled efhciently in
Landau gauge Monte Carlo simulations and which satisfies a useful sum rule.

PACS numbers: 74.60.Ec, 74.76.—w

In mean-field theory type II Ginzburg-Landau super-
conductors in a magnetic field have an unusual second-
order phase transition. In .the low-temperature (T
T, ) phase discovered by Abrikosov [1] the zeros of the
superconducting order parameter (vortices) form a lattice
and the system exhibits both broken translational sym-
metry and off-diagonal long-range order (ODLRO). Un-
usual aspects of the transition are related to the Cooper-
pair Landau level structure [2] which causes the mean-
field instability of the disordered phase to occur simul-
taneously at T, in a macroscopic number of chan-
nels. However, the nature of this phase transition is
qualitatively altered by thermal fluctuations. Interest in
the effect of thermal fluctuations on the thermodynamic
properties of type II superconductors has increased since
the discovery of high-temperature superconductors which
have an unusually short coherence length so that fluctu-
ation effects are important over a relatively wide temper-
ature interval surrounding T,

For D-dimensional superconductors fluctuations in a
magnetic field at temperatures well above T, , where
different channels are independent, are like those of a
(D —2)-dimensional system [8] at zero magnetic field;
fluctuations become important for D ( 6 and if cou-
pling between channels could be neglected, the mean-
field phase transition to the Abrikosov state would be
destroyed by fluctuations for D & 4. Brezin et al. [4] have
shown that to leading order in 6 —D fluctuations drive
the Abrikosov transition first order and suggest that this
result is probably correct for D = 3. Indeed Hetzel et at.

[5] have found evidence from Monte Carlo calculations
that the transition is first order for D = 3 at least when
fluctuation effects are strong enough to shift the transi-
tion point into the simpler London regime which applies
for T/TMF « 1. However, high-temperature perturba-
tive expansions [6,7], even when evaluated to high order
where coupling between different channels becomes im-

portant, show no evidence of a transition for D = 3 or
D = 2. The results of Monte Carlo simulations for D = 2
have been controversial. Tesanovic and Xing [8] and Kato

and Nagaosa [9] find evidence for a phase transition at
a temperature below TM while O' Neill and Moore [10]
have concluded that the Abrikosov phase transition is en-
tirely suppressed by thermal fluctuations. In this Letter
we present [11] the results of a Monte Carlo simulation
for D = 2 in which we find clear evidence of a phase tran-
sition and behavior suggestive of a first-order transition.

The free energy density of a Ginzburg-Landau super-
conductor is given by

f[@1= ~(T)I@I'+ 21@1'+
2 .I(—ih& —2«)@ '.

(F:—L, f d r f [i'(r)], where L, is the film thickness. )
The quadratic terms in Eq. (1) are minimized by order
parameters which correspond to a lowest Landau level
(LLL) wave function for the Cooper pairs. It follows
that the mean-field theory superconducting instability
occurs at TM [nH(T, ) = O, ciH = a. + heB/m*] for
all Cooper pair states which are in the LLL but only at
much lower temperatures for channels corresponding to
higher Landau level Cooper pair wave functions. In this
work we adopt the LI L approximation in which we as-
sume that fluctuations in higher Landau level channels
can be neglected [6,8,10] (see below) and consider only
the two-dimensional limit where variations of the order
parameter along the z direction can be neglected. In the
LLL approximation the order parameter is defined up
to an overall scale factor by its zeros, i.e. , by the posi-
tions of the vortices. (This property has been used by
Tesanovic and collaborators [8,12] to develop many use-
ful insights. ) This limit applies to films thinner than a
coherence length and to layered systems when the inter-
layer coupling can be neglected. We choose the Landau
gauge [A = (0, Bx, 0)] and apply quasiperiodic boundary
conditions to the order parameter inside a finite system
with lengths L and L„. (For thin films, especially those
formed of strongly type II materials, it is a good approx-
imation to ignore fluctuations in the vector potential A. )
The order parameter i'(r) can then be expanded in the
form

(2)

432 0031-9007/93/71 (3)/432(4) $06.00
1993 The American Physical Society



VOLUME 71, NUMBER 3 PH YSICAL REVIEW LETTERS 19 3UVV 1993

A(k) =— ) C~, C~, 6~,
3122

x exp[ —ik (X~, + X~, )/2], (4)

where for a finite system k = 2vr(n /L, n„/I „),6~ = 1
if j is a multiple of Ny and is zero otherwise, and
X~

—= X~ p. [Note that Ap =—A(k = 0) is proportional to
the integrated superfluid density. ] A(k) is conveniently
sampled in our Landau gauge Monte Carlo simulations
and

XsFD(k) = '
[ exp[ —&'&'/21(l&(k) I').

LLy P )

In Eq. (2) X~,, = j 2vrI. /L„+ sL, / = hc/2eB, and
s runs over all integers and j runs from 1 to N~
L L„/27rP which must be chosen to be an integer.

A central role in our study is played by the superfluid-
density spatial correlation function, whose Fourier trans-
form is de6.ned by

1
XsFD(k) —=

L
d'r d' r'(I&(r) I'IO(r') I')

x y
x exp[ik. (r —r')].

We evaluate ysFD(k) by expressing it in terms of

to converge we must have lim~~~ ~ ~A(k)] —+ N& and
hence that

62a L
lim ysFD(k) = '

exp[ —k E /2).
JkJ~oo 2

It is readily verified [13] that Eq. (7) is satisfied for all
k g 0 when T )) T, and the vortex fluid is completely
uncorrelated. On the other hand, in a vortex-lattice state
A(k) = Ap6k c, where G is a reciprocal lattice vec-
tor. To see that Eq. (6) is satisfied in this case note
that there are Ny wave vectors per Brillouin zone in the
Abrikosov state. Equation (6) tells us that averages of
~A(k)[ over large areas of reciprocal space yield N& ir-
respective of the degree of correlation among the vortices.
N~(~6(k)]2) —1 provides a very convenient measure of
the degree of vortex correlation in a system.

We can express the Ginzburg-Landau free energy in
terms of ~4(k) ~2 as follows

E~(P, ~.)
k T k T

p[z ]~', l= Nyg sgn(nH)Ap +
4

(5) where

Moreover A(k) satisfies the following sum rule for each
configuration of the Ginzburg-Landau system,

k lP[A]—:) ~A(k)
~

exp
2

) [[A(k)]2 —1/Np] = 0, (6)

where A(k)—:A(k)/Ap. Note that A(k) depends only
on the distribution of [4'(r)

~

and not on its overall mag-
nitude. Equation (6) reflects the LLL restrictions on the
superfluid density distribution. [For a finite system, both
n and n„ in the sum over k in Eq. (6) range over any
N~ consecutive values. )

In the vortex-fluid state yspD(k) should be a smooth
function of wave vector and if the sum over k in Eq. (6) is

and g
—= nH(+E L, /PK~T)i~2. P[A) has its minimum

value in the Abrikosov state and increases as the vortex
positions become less correlated. It is easy to show that
in the uncorrelated vortex fluid P[A] = 2 while for the
triangular lattice Abrikosov state P [6 = PA 1.159595.
(This relatively weak variation in P was exploited re-
cently [12] by Tesanovic et at. ) We regard P[A] and Ap
as two intensive thermodynamic variables which char-
acterize the state of the LLL Ginzburg-Landau system.
We can define an entropy which measures the function-
space volume associated with a given P[A] and Ap by
Sp(P, Ap):—k~ in[W(P, Ap)], where

dC~ dC~ b'(P —P[A])b 4p —) C~C~

With this definition the free energy, P and Ap at any
value of g can be determined by minimizing

Fp(P, 6p)—:Ep(P, 2 p) —TS(P, Ap)

with respect to P and Ap. (E3 is extensive so fluctu-
ations become negligible in the thermodynamic limit. )
We will use Eq. (11) to interpret the Monte Carlo results
discussed below.

Using the Metropolis algorithm we have determined
distribution functions for several quantities [14] including
Ep, Ap, P[4], and [A(k)]~ as a function of both g and
Ny. Finite system shapes have been chosen to accom-

modate perfect triangular lattices. (~ = —~, whereL ~3N
N~ = N x N&. ) For all simulations the order parameter
was initialized to the Abrikosov lattice value and the first
104 Monte Carlo steps were discarded. (We have com-
pared the results from diferent stages of our Monte Carlo
runs to make sure our systems were well equilibrated. )
Some typical results for ([A(k)] ) at T ( TM~ are shown
in Fig. 1. At g = 30 the vortex fluid has developed
strong correlations. For N~ = 120, Ny([A(C)] ) 3
which is 3 times larger than for the high-temperature
uncorrelated flux fluid but still 40 times smaller than
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FIG. 1. (~A(q )[ ) at g = 30 (a) and g = 50 (b) for a,

finite system with Ny = 120. (q„= 0 and T ( T, )Th.e
insets show the dependences of (~A(G)[ ) on system size at
these g values. The dashed line in the inset of (a) is propor-
tional to N&

' while that in the inset of (b) is proportional
to N . (G'is a member of the first shell of reciprocal
lattice vectors of the Abrikosov lattice. ) These averages were
obtained from (1—2)x10 Monte Carlo steps.

its mean-field value. For g = 50, ([A(G)[ ) has in-
creased to more than half its mean field value. The
insets in Fig. 1 show the dependence of ~A(G)

~

on
system size for these two values of g . For g = 30,
(~4(G)

~ ) N& as expected in the fiuid state while

f» g = 50, ([&(G)[ ) N& , consist'ent with the
quasi-long-range order expected in the Abrikosov state.
Figure 2 shows that for a given system size ([A(G)~ )
increases relatively abruptly at g2 42.5 suggesting the
occurrence of a phase transition.

To examine this possibility and to attempt a determi-
nation of the order of the phase transition we have ex-
amined the dependence of the Ep distribution function
[15,16] on system size for g2 43 and N~ = N x N„=
10 x 8, 10 x 10, 12 x 10, 12 x 12, and 14 x 12. The re-
sults are shown in Fig. 3. For each system size the num-
ber of Monte Carlo steps required to determine these
distribution functions accurately exceeded 8 x 10 . For
Ny & 100 a double peak structure is clearly visible which
provides unambiguous evidence of a phase transition.
This structure becomes more pronounced with increas-
ing system size suggesting the occurrence of a first-order
phase transition. However, for the system sizes we are
able to study the free energy barrier between the two
states does not yet show the N& behavior which would1j2

be expected at large Ny in the case of a first-order tran-
sition. (In each of these Monte Carlo runs the number
of flips between high and low energy states of the sys-
tem exceeded 30.) For each N~ the adjusted [15,16] dis-
tribution function at the value of g where the peaks
have equal height is plotted. By extrapolating these val-
ues of g to Ny = oo as shown in the inset we esti-
mate that a first-order phase transition occurs [17] at
g = gM = 43.5 + 1.0. (This can be compared with pre-
vious estimates g~ 50.0 by Tesanovic and Xing [8] and

gM = 49.0 by Kato and Nagaosa [9]). In Fig. 3(b) we
compare the ([A(G) ~2) distribution from values of the or-
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FIG. 2. Dependence of (~A(q)~ ) on g at Ny = 120 for

q = C and for q g C where C is a reciprocal lattice vector
of the Abrikosov lattice.
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FIG. 3. (a) Landau-Ginzburg energy distribution function
at the finite system phase transition point for various system
sizes. Energies are in units of the mean-field condensation
energy, Nyk&Tg /Pz. The inset shows the dependence of
the g at the phase transition on system size. (b) Low-energy
and high-energy cuts of the distribution function for ~A(G)

~

der parameter with high energies with that from low en-
ergies for N~ ——168. For high-energy configurations the

([A(G)
~ ) is 5.0N& while for the low-energy configu-

rations the distribution is peaked at 0.5 demonstrating
that the phase transition occurs between a high-energy
strongly correlated vortex-fluid state and a low-energy
Abrikosov state. The magnetization discontinuity and la-
tent heat associated with the phase transition depend on
material parameters and are [14] typically 10 sCo/A~&

and 0.6k~NyTM2( dHM2F/d—T)/(H, 2
—H), respec-

tively.
In Fig. 4(a) we show distribution functions for P(A)

at several fixed values of Ao and in Fig. 4(b) we show
distribution functions for Ao at several fixed values of
P(A) for P(A) and Ao near the values at which the
phase transition takes place. The P(A) distribution func-
tion is proportional to exp[St(P, Ao)/kr3 —PN~g262o/4].
[See Eq. (11). At extrema of the distribution BSp/BP =
kriN~g26o/4. ] The double peak structure apparent in
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ductors, particularly Bi2Sr2CaCu08, the LLL approxi-
mation may fail over a fairly wide range of temperature
below the zero-field T, .
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