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We introduce a new type of boundary conditions, smooth boundary conditions, for numerical studies
of quantum lattice systems. In a number of circumstances, these boundary conditions have substantially
smaller finite-size effects than periodic or open boundary conditions. They can be applied to nearly any
short-ranged Hamiltonian system in any dimensionality and within almost any type of numerical ap-

proach.

PACS numbers: 02.70.—c, 05.30.Fk, 75.10.Jm

In most numerical calculations for quantum systems,
periodic boundary conditions (PBC’s) are the accepted
standard. There are a number of situations, however,
where PBC’s are inadequate. In systems with some form
of incommensurate order, for example, very large system
sizes are needed to approximate the incommensurate be-
havior of the infinite system, and in mean-field methods,
where a number of iterations are required to achieve con-
vergence, the system can get stuck in a commensurate
state far from the desired incommensurate order. Anoth-
er example, which forms the primary motivation for this
work, stems from the density-matrix renormalization
group (RG) method [1]. This new real-space numerical
method has proven to be extremely accurate for Heisen-
berg spin chains [2], but for greatest accuracy require-
ments are that the chain not form a closed loop, as in
PBC’s. This poses no great inconvenience for the S =1
chain, where there is a finite correlation length, but is
quite inconvenient for half-integer spin chains (and most
1D fermion systems), where boundary effects decay as a
power law.

Recently, new types of boundary conditions, such as
self-determined boundary conditions [3] and nebula
boundary conditions [4], have been studied in conjunction
with quantum Monte Carlo simulations, but cannot be
generalized in an easy manner to any arbitrary system or
to other types of numerical techniques. In this paper we
introduce a new type of boundary conditions, smooth
boundary conditions (SBC’s), which in the circumstances
listed above perform better than PBC’s and open bound-
ary conditions (OBC’s). The main idea of these new
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boundary conditions is to smoothly ‘“turn off” (set to
zero) the parameters of the Hamiltonian near the edges
of the system. Surprisingly, in many cases where PBC’s
or OBC’s perform very well, SBC’s perform better. They
can be applied to numerical calculations for nearly any
system with local interactions in any number of dimen-
sions.

After introducing the ideas of SBC’s, we will illustrate
their use in several systems. The ideas behind SBC’s are
closely related to the summation of infinite series and the
Borel transform, and we will motivate their development
by first discussing accelerated convergence of numerical
series.

Let s, =2 =0am be a slowly converging alternating
series, with s =lim, _. »s,. For example, we can consider
the series

am=(—1"/Inlln(m+3)]. )

The summation of such a series can be viewed as a ter-
mination problem; if we stop with an odd number of
terms, we get a positive result, while stopping with an
even number gives a negative result. We would like to
find some way of terminating the series in a way that does
not bias between an odd and even number of terms. We
can do this by constructing a smoothing function, ¢,,, and
taking

M
S22 AmCm - 2)
m=0

The smoothing function is conveniently described as a
continuous function y(x), 0<x =<1, with y(0)=1 and
y(1) =0, samples at a discrete set of M points,
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cm=ym/M), (3)
with 0 < m < M. An effective choice for y(x) is
1 x—1/2
=— |1 —tanh 2= |
y(x) 5 [ anh—-—= J 4)

This approach is remarkably successful at summing a
wide variety of common, slowly converging, alternating
series, such as those for =z, In2, etc., attaining results ac-
curate to 10 or 12 digits with 100 terms. Convergence is
roughly exponential with M. For the series in Eq. (1), we
obtain the result s =8.749551241(2) with M =100. The
same c¢p,’s are used for each series, and the total numeri-
cal work is extremely small. Note that all derivatives of y
are zero at 0 and 1; in fact, the function has essential
singularities at 0 and 1. These properties are crucial for
effective termination of a series; for example, if the func-
tion y(x) =(1 —x2)? is used, for which y"#0 at 0 and 1,
convergence is only quadratic in 1/M.

This procedure is closely related to the Borel transform
[5], which is usually applied to divergent series. The
Borel transform of the series s is defined as

alx)= Y —x™. (5)
From the definition of a(x) it follows trivially that

s=j;mdxe_"a(x). 6)

The standard use of the Borel transform is to calculate
a(x) and then perform the integration; however, here
we will not calculate a(x). We will only assume that
a(x)e ~* is negligible for x greater than a cutoff M'. We
take M’ as the upper limit of the integral in Eq. (6), then
replace a(x) by its definition Eq. (5), and exchange the
sum and integral. We obtain

s = z amcm(M'), (7)
m=0
where
cmM)=e~M Y M (8)

n=m+1 n!

For m > M =2M', ¢,,(M') is completely negligible, and
the sum in Eq. (7) can be terminated, yielding Eq. (2).
In Fig. 1 we show both c,, as defined in Eq. (8) with
M'=20, and y(m/M) as defined in Eq. (4) with M =40.
The Borel approach and the approach using Eq. (4) are
roughly equally effective at summing common series.
However, the Borel form is slightly less convenient, since
one must chose both M and M'.

This approach to numerical series is largely pedagogi-
cal; there are probably even more efficient ways to sum
such series. To apply these ideas to reduce finite-size
effects in a general Hamiltonian system, we consider first
a trivial example, a one-dimensional tight-binding chain.

4284

1.0
0.8
0.6
g
o
0.4

0.2

0.0

FIG. 1. The smoothing function, cn, as a function of the lat-
tice site, m. The solid line corresponds to Eq. (4) in the text,
and the squares correspond to the smoothing function derived
from the Borel transform defined through Eq. (8).

We consider an L-site lattice with hopping matrix ele-
ment ¢;, centered at £ =0, with Fermi level er, and Ham-
iltonian matrix

H,‘j=_t,‘5j,,'+1_tj5,',j+1. 9)

Ordinarily #; (which gives the hopping between sites i and
i+1) is a constant t. To apply SBC’s we set

CM—i, lf.lﬁM,
L/t=41, M<i<L-—M,
Ci—-r+m, L—M <i<L.

(10)

Here ¢; is the smoothing function defined by Eq. (4) or
Eq. (8).

We also need to adjust the diagonal elements of H. A
general rule for applying SBC’s is that in the limit that
the width of the smoothing region M — oo, the local
properties of the system should be constant with i. In this
case the Fermi level € is constant across the system, so
that, as we vary the local bandwidth, we must shift the
band center so that ¢f strikes the band in the same rela-
tive position. Thus, Eq. (9) becomes

l,'—|+t,'
2t

Hij= —1:6ji+1—1;0;j+1% 8 jeF [1 -

(1)

Note that Eq. (11) explicitly depends on er, whereas Eq.
(9) does not. This Hamiltonian reproduces the properties
of the infinite system extremely well, even on a relatively
small lattice.

If OBC’s are used on this system, edge effects produce
slowly decaying Friedel-type oscillations in local proper-
ties, such as the density. PBC’s work much better, but
still, the typical energy level spacing decays only as 1/L.
SBC’s concentrate more states at ¢ than elsewhere. The
advantages of this are apparent in Fig. 2, where we plot
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FIG. 2. The average kinetic energy, (K), as a function of the
chemical potential, u, for the noninteracting one-dimensional
tight-binding chain with L =30 sites. For SBC’s the smoothing
occurs on the leftmost and rightmost 10 sites.

the average kinetic energy per site, (K), as a function of
the chemical potential, 4 =¢r. The choice of PBC’s
shows the presence of discontinuous jumps, typical of a
finite-size system. On the other hand, the use of SBC’s
eliminates the discontinuities in (K) already on a system
as small as L =30 sites, and agrees extremely well with
the infinite system results. The Friedel-like edge effects
are also absent (not shown).

We next consider incommensurate spin-density-wave
order in the positive-U 1D Hubbard Hamiltonian [6]
within a mean-field approximation. The Hubbard Ham-
iltonian is

== tilclocivrotclriocio)
i,o

+ X Uiniyniy — 2pitio (12)

1 1,0
which consists of a system of electrons with an on-site
interaction with coupling constant U;. Here ¢; is the
nearest-neighbor hopping parameter between sites i and
i+1, and y; is the chemical potential. The c;T,, are fer-
mion creation operators at site / with spin o, and
n,-.¢,=c,~T.,c,~,c. Here t;/t is scaled according to the left-
hand side of Eq. (10) when we use SBC’s and U;/U
=u;/u=01/2t)(t;—+1;), where t, U, and u are the bulk
values.

Applying the Hartree-Fock approximation, we rewrite
the density operators as

(13)

We then insert Eq. (13) in the Hamiltonian of Eq. (12),
ignore terms quadratic in the density fluctuations, én; o,
and obtain the effective Hartree-Fock Hamiltonian

n,;,,=<n,-_,,) +6I1,',a =(n,-,a) + (n,-,,, - <n,',c,>) .

Hur=—2ti(cllociv1,oF i1 0¢10)
i,o

+Z(U,-<n,-‘—a>'-y,~)n,',a, (14)
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FIG. 3. The incommensurate spin-density-wave vector, g, on
a Hubbard chain as a function of the chemical potential, u.
The chain has L =30 sites, the on-site repulsion is U/t =2.0,
and for the SBC’s the smoothing occurs on the leftmost and
rightmost 10 sites. Here g is rescaled by L/x in order to show
that with PBC’s the spin density wave is commensurate with the
lattice.

where we have dropped all constant terms. This Hamil-
tonian can be easily diagonalized, and solutions can be
found self-consistently by iteration. Previous studies us-
ing PBC’s and OBC’s have shown that the Hamiltonian
in Eq. (14) has both spin and charge incommensurate
density waves [7,8]. Here we will show that the incom-
mensurate wavelength for the bulk can be already deter-
mined to high accuracy on a small lattice using SBC’s
but not with standard boundary conditions.

In Fig. 3 we show the incommensurate spin-density-
wave vector g as a function of the chemical potential,
U =¢€r, on a lattice with L =30 sites. We find that when
applying PBC’s to the system, g takes only commensu-
rate, discrete values. On the other hand, when consider-
ing SBC’s with all energy scales (¢;/t and U;/U) decreas-
ing on the rightmost and leftmost 10 sites according to
the smooth function defined in Eq. (10), we see that g in-
creases smoothly with u in agreement with the infinite
lattice results, which were derived from solving the sys-
tem on larger lattices (L =120,180 sites) with OBC’s and
SBC’s and finding no changes in the results upon increas-
ing L or changing types of boundary conditions. It is
clear from Fig. 3 that, even on a small lattice (L =30),
SBC’s give results that are in good agreement with the
results in the bulk.

To show that the application of SBC’s is not only
effective for noninteracting systems or within mean-field
theories, we studied the Heisenberg chain using the
density-matrix RG approach [1,2]. Here, we consider an
antiferromagnetic S =% Heisenberg chain described by
the Hamiltonian

L
H=XJSi"Si+:. (15)
i=1
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FIG. 4. The bond strength, (S;*S;+1), as a function of the
site index, i, for an S=7% Heisenberg chain with L =60 sites
and m =128 states kept. For SBC’s the smoothing occurs on
the leftmost and rightmost 10 sites.

The Bethe ansatz exact solution to the model for the
infinite system predicts a ground state energy, Ej
=4+ —In2, with ST=0, where S7 is the z component of
the total spin [9]. As expected from the valence bond
picture of the S=7% chain [2], the density-matrix RG
calculations show that the effect of OBC’s causes a strong
alternation in the bond strength, (S;-S;+), as a function
of the site index, i. This alternation decays very slowly as
the size of the system is increased [2].

We apply SBC’s in order to eliminate, even on a rela-
tively small chain, the bond-strength alternation which is
absent in the infinite system. For this purpose, we choose
Ji/J according to the function on the left-hand side of
Eq. (10). In Fig. 4 we show the bond energy per site,
(S;*S;+1” as a function of the site index, i, with OBC’s

4286

and SBC’s on a chain with L =60 sites. It is clear that
the strong-bond alternation present in the system with
OBC’s is strongly suppressed when we apply SBC’s.

In summary, we have studied the effect of SBC’s on
one-dimensional systems of interacting particles. For all
systems under consideration (noninteracting Fermi gas,
Hubbard model, and Heisenberg chain) and within all
numerical techniques used (exact diagonalization, mean-
field self-consistent calculations, numerical renormaliza-
tion group), the use of SBC’s allows one to greatly reduce
finite-size effects (such as spatial fluctuations and frustra-
tion) and extrapolate to the thermodynamic limit on rela-
tively small systems. The use of SBC’s can easily be ex-
tended to quantum Monte Carlo techniques, and to sys-
tems of higher dimensionality, where work is still in pro-
gress.
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